
Segmentation-free Heart Pathology Detection Using Deep Learning

Erika Bondareva1, Jing Han1, William Bradlow2, Cecilia Mascolo1

Abstract— Cardiovascular (CV) diseases are the leading
cause of death in the world, and auscultation is typically an
essential part of a cardiovascular examination. The ability to
diagnose a patient based on their heart sounds is a rather
difficult skill to master. Thus, many approaches for automated
heart auscultation have been explored. However, most of the
previously proposed methods involve a segmentation step, the
performance of which drops significantly for high pulse rates or
noisy signals. In this work, we propose a novel segmentation-
free heart sound classification method. Specifically, we apply
discrete wavelet transform to denoise the signal, followed by
feature extraction and feature reduction. Then, Support Vector
Machines and Deep Neural Networks are utilised for classifica-
tion. On the PASCAL heart sound dataset our approach showed
superior performance compared to others, achieving 81% and
96% precision on normal and murmur classes, respectively.
In addition, for the first time, the data were further explored
under a user-independent setting, where the proposed method
achieved 92% and 86% precision on normal and murmur,
demonstrating the potential of enabling automatic murmur
detection for practical use.

I. INTRODUCTION

Cardiovascular (CV) diseases are the number one cause
of mortality internationally, accounting for 17 million deaths
per year according to the World Health Organisation [1].
Auscultation, the process of listening to the heart using a
stethoscope, is a powerful screening tool due to its afford-
ability, non-invasiveness, safety, and ease of administration;
but it is a very difficult skill to master. Therefore, researchers
are starting to explore the potential of digital technologies for
both sound gathering and automatic data analysis.

To fully appreciate the capabilities of CV auscultation,
it is important to understand the origin of the sounds.
One full cardiac cycle consists of two sounds, commonly
referred to as S1 and S2, which are caused by valve closure.
Occasionally, there are additional sounds present, which are
most often indicative of a pathology.

Conventional heart sound classification methods typically
involve sound filtering, segmentation, feature extraction, and
machine learning-based inference. However, the performance
on a wider sample population is rarely a concern. It has been
reported that many denoising approaches in the literature do
not work on real-life data due to the algorithms developed
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on artificially noisy data [2]. Additionally, there are ques-
tions and issues remaining which are discussed below and
investigated particularly in this study.

Limitations of segmentation: One of the most common
segmentation categories are envelope-based methods, includ-
ing normalised Shannon average energy [3], [4], [5] and
Hilbert transform and its variations [6], [7], [8]. These
methods, however, are based on the premise that systole
is shorter than diastole, which is only true for a narrow
band of heart rates [9], and they become less effective for
noisy signals [10], [11]. As a consequence, segmentation’s
reliance on the signal being clean within a narrow band of
heart rates drastically limits its application, with the error
introduced by incorrect segmentation propagating into heart
sound pathology classification, and introducing considerable
computational complexity into the algorithms [12]. To avoid
such complexity and the underlying error propagation issue,
in this work we propose a segmentation-free framework for
heart sound classification. To the best of our knowledge,
there are very few segmentation-free methods [13], and our
method shows better performance.

Lack of performance comparison: To tackle the heart
sound classification problem, a variety of models have been
investigated. For instance, Support Vector Machines (SVMs)
are arguably the most popular classifier owing to their mature
theoretical foundation, with a plethora of research attempts to
explore various feature inputs for heart sound classification.
Some utilised SVMs with deep features as inputs, which
yielded a sensitivity of 84.8% [14], and others applied sparse
coding for feature extraction, achieving 86.5% accuracy [15],
both on PhysioNet heart sound dataset. More recently, Deep
Neural Networks (DNNs) have started to receive greater
attention for this task [16], [17], [18]. While DNNs deal
exceptionally well with multi-class problems, unlike SVMs,
they require a large amount of training data. However,
owing to the lack of fair performance comparison, no clear
observations can be drawn as to the superiority of any of
them. In our study, we compare the inferential capabilities
of SVMs and DNNs on the same data set, and the results
indicate that DNNs appear superior to SVMs for heart sound
classification in most cases.

Poor reproducibility issue: Concerns about poor repro-
ducibility of digital technologies have been raised in a vari-
ety of research areas, including biomedical engineering. In
particular, the original PASCAL heart sound challenge [19]
divided the data into train and test sets, but user-independent
constraint was not maintained: two different sound samples
from the train and test sets may had been collected from
the same patient. In the present study, we address this
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issue and re-evaluate the performance of our framework
with user-independent constraints. This simulates the utmost
authentic assessment in clinical practice and may increase the
generalisability of our findings. Our results demonstrate that
the proposed approach is able to detect heart murmurs from
an unseen patient with 86% precision via a DNN model.

Motivated by previous encouraging studies and trying
to tackle the aforementioned understudied issues for heart
sound classification, in this work we propose a novel frame-
work for heart sound classification. In particular, we focus
on detecting heart murmurs among normal heart sounds and
sounds with extrasystole. We develop a segmentation-free
approach for the task at hand. Also, we carry out extensive
experiments on the PASCAL heart sound dataset, aiming at
fairly comparing the effectiveness and robustness of SVM
and DNN models. More importantly, we evaluate the perfor-
mance under a user-independent setting to verify our model’s
generalisability to heart sound data from unseen users. Our
results show that the proposed approach outperforms other
state-of-the-art methods.

II. METHODOLOGY

A. Data and its limitations

The PASCAL Classifying Heart Sounds Challenge dataset
(2011) [19] is the first large publicly available heart sound
dataset. We used the PASCAL heart sound dataset B for
this study, which was collected using a stethoscope. Dataset
B contains three classes: normal, murmur, and extrasys
(for extrasystole). Each class contains audio recordings of
heart sounds, further referred to as samples. The labelled
samples are split into two subgroups – noisy and “clean”
(comparatively) samples. There are 149 noisy samples: 120
normal and 29 murmur, and a total of 461 clean samples: 200
normal samples, 66 with a murmur, and 46 with extrasys.
Also, there are 195 unlabelled sound samples for testing.
However, the user identification information can still be
fetched from the unlabelled data, and thus can be re-labelled
and exploited to enlarge the size of the data for training.

Worth mentioning that the patients whose samples are
labelled as extrasys also have other samples in the dataset
that do not have the extrasystole present and therefore are
normal. Extrasys is essentially a normal heart sound, except
at some point during the recording of any length there
is an additional heart sound present. This knowledge was
leveraged for data manipulation, described in section II-E.

B. Data preprocessing

1) Denoising: Heart sound denoising was performed us-
ing a Finite Impulse Response (FIR) high-pass filter followed
by a Discrete Wavelet Transform (DWT), utilising MAT-
LAB’s Wavelet Toolbox. The high-pass filtering removed all
frequencies below 60Hz. Various parameters were tested for
wavelet denoising, and the parameters that resulted in the
removal of the most noise while keeping the rest of the signal
intact were selected and applied to the whole dataset. Specif-
ically, Daubechies 4 was selected as the mother wavelet, 6th

decomposition level was used, heursure threshold selection

method, hard thresholding, and threshold rescaling using
level-dependent estimation of level noise. Finally, before
saving the denoised audio samples for feature extraction and
classification, the signal was normalised in the range between
-0.5 and 0.5, and centred so that the mean is equal to zero.

2) Feature extraction: The INTERSPEECH ComParE
2018 feature set (IS-18) [20] was extracted from the signal,
resulting in a vector with 6373 features. This feature set
has been applied successfully for many acoustic tasks. In
order to enable extrasys detection, additional features were
computed. These features were based on Shannon energy
(EShannon) calculated for the signal using the equation:

EShannon = −(x2) ∗ log10x2, (1)

where x denotes the signal. Then, a moving average was
calculated with 100 samples window length. The resulting
Shannon energy envelope was normalised, and peaks were
extracted using a height threshold of 0.08 and distance of
400 samples, and the peak-to-peak distance was calculated.
Finally, a number of features was extracted based on the
peak-to-peak distance as well as peak timing: two largest
and two smallest values, as well as a mean and a standard
deviation. In addition, the total number of peaks was counted.
The resulting 13 features were concatenated into a vector,
and appended to the IS-18 feature vector.

While this approach still includes peak detection, it does
not rely on the correct classification of S1 and S2 heart
sounds, as the methods presented for extrasys detection tend
to. Therefore, this approach is likely to be more robust to
noise inherently captured with heart sounds.

3) Feature reduction: The resulting feature vector had
6386 components. The extracted features were standardised
by removing the mean and scaling to unit variance, and the
standardised features were then reduced by utilising principal
component analysis (PCA). 460 components were retained,
with variance ratio 99.99%.

C. Classification

Python Tensorflow and Keras libraries were used for
designing the classifiers and evaluating their performance.
We decided to apply an SVM (with an RBF kernel) and DNN
for classification, given the success reported in previous
works. For the DNN, the design that yielded the best result
was a 6-layer neural network, with 512 nodes in the first two
layers, 256 in the middle two, and 128 nodes in the last two
layers. We employed ReLU activation, the dropout 0.2 in
the first layer and 0.5 on all the following layers, and Adam
optimiser. The model was trained for a varying number of
epochs, depending on the experiment, and the numbers are
specified and explained in section II-F.

D. Evaluation

The PASCAL challenge suggested a number of specific
metrics for evaluation of the models:

• Precision per individual class — a measure of how
many samples belonging to a specific class are labelled
correctly, calculated as TP/(TP + FP). When reporting
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results, PN, PM, and PE stand for precision of normal,
murmur, and extrasys respectively.

• Sensitivity (Sens = TP/(TP + FN)) and specificity
(Spec = TN/(TN + FP)).

• Youden’s index (γ) — a metric demonstrating the test’s
ability to avoid failure, which can be calculated using
γ = Sens + Spec− 1.

• Discriminant power (D) also summarises sensitivity
and specificity:

D =

√
3

π

(
log

(
Sens

1− Sens

)
+ log

(
Spec

1− Spec

))
• Total precision — the sum of precision values obtained

per individual class. Maximum total precision for three-
class problem is 3.0, and 2.0 for binary classification.

E. Dataset manipulation

The dataset was manipulated for some of the experiments
conducted as a part of this work, due to the concern that the
split between train and test set suggested by the PASCAL
challenge does not allow to perform cross-validation or user-
independent testing. Keeping in mind the superior clinical
importance of murmur detection, all extrasys files were
relabelled into normal (or, rather, sounds with no murmur
present), and the patient identification number was used to
label all the unlabelled samples from the test set.

F. Experiment design

Three experiments were designed for this study:
• Exp 1 (Three-class Classification) — trained and

evaluated the model using the PASCAL dataset the
way the challenge was intended: training on three
classes (normal, murmur, and extrasys), and evaluating
using the included locked spreadsheet that automatically
calculates the suggested evaluation metrics. The deep
learning model was trained for 500 epochs. Worth not-
ing, that the train/test split is not user-independent, but
the experiment was performed for method comparison
with previous results reported on the PASCAL dataset.

• Exp 2 (Binary Classification) — relabelled all the
extrasys samples to normal. As a result, instead of
three-class classification, a binary classification (normal
and murmur) was performed. Then, we also labelled
all the unlabelled samples from the test set using the
patient ID under the assumption that each patient has
either normal or murmur heart sounds. Given that the
classification problem became binary, only 50 epochs
were required to train the DNN model. The main goal of
this experiment was to observe the effect the increased
amount of data has on the classifier performance.

• Exp 3 (User-Independent) — used the same data and
labels as in Exp 2, but with user-independent train/test
split. The DNN model benefited from a slight increase
in the number of epochs to 100. This experiment aimed
to investigate the classifier performance in a more
realistic setting, on previously unseen users.

TABLE I
RESULTS OF EXP 1.

Previous works Our method
[3] [9] [4] [5] [13] SVM DNN

PN 0.70 0.77 0.71 0.82 0.77 0.82 0.81
PM 0.30 0.37 0.33 0.59 0.76 0.70 0.96
PE 0.67 0.17 1.00 0.18 0.50 0.20 0.50
Sens 0.19 0.51 0.14 0.49 0.34 0.54 0.47
Spec 0.84 0.59 0.90 0.66 0.95 0.77 0.99
γ 0.02 0.01 0.04 0.15 0.29 0.31 0.46
D 0.04 0.09 0.09 0.15 1.24 0.33 0.98
TPr 1.67 1.31 2.04 1.58 2.03 1.72 2.28

For all of the experiments, both SVM and DNN classifiers
were used for performance comparison.

Furthermore, for Exp1, we compared our approach with
other state-of-the-art methods reported on the PASCAL
dataset. In particular, the two winners of the challenge
proposed employing segmentation-based features, with the
first group utilising J48 and multi-layer perceptron (MLP)
algorithms [3], while the second group proposed an algorith-
mic approach (no machine learning) [9]. In addition, discrete
and continuous wavelet transform coefficients were explored
as inputs to a random forest classifier in [4]. Segmentation-
based features and a discriminant analysis classifier were
used in [5]. Last, our approach was also compared with
another segmentation-free method, which utilised autocor-
relation features and diffusion maps [13].

III. RESULTS AND DISCUSSION

The proposed methodology maintains high performance
on the original challenge, while offering a significant im-
provement on the detection of murmur. It does not employ
segmentation, which is highly desirable, considering seg-
mentation’s susceptibility to noise and elevated heart rates.
In addition, we demonstrate improved performance across
all metrics by increasing the amount of data in the training
set, managing to preserve the high performance for the user-
independent split.

The results of Exp 1 and the comparison to other state-of-
the-art results on the PASCAL dataset are presented in Table
1. DNN demonstrates better performance than the SVM, and
the segmentation-free methodology presented in this paper
yields superior results for the following metrics: the precision
of murmur, the specificity of heart problem, Youden index of
heart problem, and total precision. The metrics outperformed
by other approaches are precision of normal, where our
achieved precision is only marginally worse (1% reduction),
the precision of extrasys, and discriminant power.

Exp 2 and 3 involved binary classification and increasing
the amount of training data, which, as expected, resulted in
increased performance (see Table 2). Worth noting that the
results of the user-independent train/test split (Exp 3) yielded
slightly poorer results, which is expected.

Comparing two classifiers, it could be argued that the deep
learning model yields better performance in comparison to
the SVM. While for the user-independent split SVM demon-
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TABLE II
RESULTS OF EXP 2 AND 3. FOR EACH EVALUATION METRIC ITS MEAN

AND ST DEV ARE REPORTED ACROSS FIVE-FOLD CROSS-VALIDATION.

Exp 2 Exp 3
SVM DNN SVM DNN

PN 0.88±0.01 0.92±0.03 0.88±0.01 0.92±0.02
PM 0.99±0.03 0.97±0.04 0.98±0.04 0.86±0.11
Sens 0.50±0.07 0.68±0.12 0.48±0.06 0.68±0.07
Spec 1.00±0.00 0.99±0.01 1.00±0.00 0.97±0.03
γ 0.50±0.07 0.67±0.12 0.48±0.07 0.65±0.09
D N/A N/A N/A N/A
TPr 1.87±0.04 1.89±0.04 1.86±0.05 1.78±0.13

It was impossible to calculate the discriminant power D
across the five folds since in some folds specificity of
murmur was 1, resulting in subsequent division by zero.

strates higher total precision and lower standard deviation
across five folds, DNN yields significantly higher sensitivity
of the heart problem.

The best performance in terms of the sensitivity of heart
problem on user-independent training and testing set splits
(Exp 3) was achieved by a DNN classifier, achieving 92%
precision of normal and 86% precision of murmur, with 68%
sensitivity of murmur.

Total precision slightly dropped for user-independent test-
ing. This suggests that in previous works on the PASCAL
dataset, which used the dataset with the data from the same
patient appearing in both training and testing sets, according
to the original design, inference models might have suffered
from overfitting and might yield poorer performance on new
samples from previously unseen patients, as a consequence
of lacking generalisability and reproducibility.

While the proposed method achieves superior sensitivity
of heart problem in comparison to all the approaches re-
ported to date, it still could be deemed insufficient, given
the importance of detection of heart murmurs. It is worth
keeping in mind that in the PASCAL dataset every sample
coming from the same patient with a murmur receives the
same label, despite the murmur amplitude variation across
auscultatory locations. This becomes especially problematic
in patients with mild murmurs, where in distant locations
murmur amplitude does not exceed the noise amplitude,
masking the pathology, and thus needs further investigation.

IV. CONCLUSION

This paper presents a novel segmentation-free method for
murmur and extrasystole detection in heart sounds. To the
best of our knowledge, the proposed framework achieved the
best performance on the PASCAL dataset. In addition, upon
increasing the training set by manipulating the dataset and
implementing user-independent testing to meet the practical
needs, we reliably boost the performance by all the evalua-
tion metrics.

Automated auscultation could become an exceptionally
valuable tool for diagnostics and disease progression track-
ing, but the lack of publicly available granular heart sound
datasets limits the research efforts in this field. The directions
for future work would include expanding the models to more

detailed datasets, as well as considering all the data from
a single patient combined to reduce the effect auscultatory
location has on the model prediction.
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