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Abstract— Cross-modality magnetic resonance image (MRI)
registration is a fundamental step in various MRI analysis tasks.
However, it remains challenging due to the domain shift between
different modalities. In this paper, we proposed a fully unsu-
pervised deformable framework for cross-modality image reg-
istration through image disentangling. To be specific, MRIs of
both modalities are decomposed into a shared domain-invariant
content space and domain-specific style spaces via a multi-
modal unsupervised image-to-image translation approach. An
unsupervised deformable network is then built based on the
assumption that intrinsic information in the content space is
preserved among different modalities. In addition, we proposed
a novel loss function consists of two metrics, with one defined
in the original image space and the other in the content
space. Validation experiments were performed on two datasets.
Compared to two conventional state-of-the-art cross-modality
registration methods, the proposed framework shows a superior
registration performance.

Clinical relevance—This work can serve as an auxiliary tool
for cross-modality registration in clinical practice.

I. INTRODUCTION

Different modality magnetic resonance images (MRIs)
show specific tissue features in different spatial domains. The
fusion of complementary information from different modal-
ities will improve the performance of various MRI analysis
tasks such as brain segmentation and disease progression
analysis [1]. However, in clinical practice, different modality
images are generally produced by scanning the patients using
scanners at different times with some anatomical changes.
Hence, there is a strong clinical need to develop a cross-
modality image registration method for accurate information
fusion thus accurately analysis and interpretation.

Due to the quite different intensity profiles across modal-
ities, cross-modality image registration remains challenging.
To tackle this problem, the majority of traditional approaches
rely on information theories. These methods generally utilize
information theory measures such as mutual information
(MI) [2], normalized mutual information (NMI) [3] to cal-
culate the misalignment between images. However, unlike
other measures such as mean squared difference (MSD) and
cross-correlation (CC), information theory measures often
ignore local anatomical details during the registration process
[1]. Some other traditional approaches convert the multiple
modalities into a new one or one of the existing modalities to
solve the cross-modality registration problem. For instance,
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Roy et al. [4] use an expectation-maximization framework
to convert T1-weighted (T1w) MRIs into CT images before
registration. Wachinger et al. [5] convert the multiple modal-
ity images into the images which only contained structural
information before registration via patch entropy calculation
and manifold learning. Although these methods obtained
some promising results, losing some anatomical information
may reduce the registration accuracy.

To fully utilize anatomical features of original images from
different modalities, image synthesis-based approaches are
proposed. These methods firstly synthesize proxy images
of missing modalities and then perform the registration in
a multi-modality manner. For instance, Iglesias et al. [6]
use a K-nearest neighbor patch-based method to synthesize
T1w MRIs for registration. Chen et al. [7] propose a cross-
modality registration method that creates proxy images based
on a trained regression forest. With the advent of the gen-
erative adversarial network (GAN) [8], lots of registration
methods utilizing GANs to create the proxy missing modality
images. Examples include adopting CycleGAN to synthesize
multi-modality atlases to improve the accuracy of conven-
tional registration algorithm [1], using a conditional GAN to
realize multi-modality images translation for cross-modality
image registration [9], and utilizing CycleGAN to generate
CT image from MRI following an inverse-consistent network
for MRI-CT registration [10].

Different from the aforementioned approaches, Qin et
al. [11] propose an unsupervised learning-based method by
directly embedding the registration network into a multi-
modal image-to-image translation framework (MUNIT) [12].
Although this method alleviates the issue of some dissimilar
image generation in CycleGAN based methods, deforma-
tion fields generated from latent content domain introduces
inconsistencies on the local level. In this paper, we pro-
pose a fully unsupervised deformable framework for cross-
modality image registration via disentangled representations.
A representations disentangling model (RDM) is introduced
and learned to drive a deformable registration network for
learning the mappings between T1w and T2w MRIs. In
addition, we propose a novel loss function consisting of an
image consistency metric defined in the original image space
and a content consistency metric defined in the content space.

II. METHOD

Given two real-valued functions x and y from differ-
ent modalities X and Y defined on the background space
Ω ∈ RH×W , they respectively represent a 2D grayscale
moving image and a 2D grayscale target image. Our goal
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Fig. 1. (a) Overview of the proposed disentangled representations based unsupervised deformable cross-modality registration framework. It consists of
two sub-frameworks, with the top one aligns image x to y and the bottom one aligns y to x. Each sub-framework consists of a registration network R
and an image-to-image translation network T . All components of T come from the representation disentangling model (RDM). (b) Overview architecture
of the RDM.

is to find an optimal mapping φ such that x ◦ φ is well
aligned to y. We achieve this by constructing a disentangled
representations based unsupervised deformable framework
and converting the cross-modality registration into intra-
modality registration. The proposed framework, as shown in
Fig. 1 (a), consists of two sub-framworks with the top one
aligns image x to y and the bottom one aligns y to x. Each
sub-framework consists of two components: (i) a registration
network R and (ii) an image-to-image translation network
T . Parameters of R are shared in these two networks and
trained simultaneously. All components of T come from a
pre-trained RDM, the architecture of RDM is depicted in
Fig. 1 (b).

A. Registration Network

Registration network R is composed of a fully convolu-
tional neural network Rθ and a re-sampling layer RS . Rθ
takes x and y as inputs, and outputs deformation fields φ1 =
Rθ(x, y) or φ2 = Rθ(y, x). The fields are H×W matrices of
2D vectors which indicate the directions and displacements
of pixels in the moving images. The architecture of Rθ has
an encoder-decoder structure with skip connections. Specif-
ically, each layer of Rθ adopts 2D convolutions followed
by Leaky ReLU activations. To fully learn the relationship
between image pairs and transformation fields, small kernels
of sizes 3× 3 and 2× 2 are used alternatively.

In terms of the re-sampling layer RS , taking the top
registration network for example, we compute the location
φ(q) of each pixel q in moving image x. The intensity value
of x(φ(q)) is calculated using the neighboring pixels of it.
Let δ(φ(q)) be a set of the neighboring pixels, the intensity
value of x (φ(q)) can be computed as

x(φ(q)) =
∑

u∈δ(φ(q))

x(u)
∏

d∈{X,Y }

(
1− |φd(u)− xd|

)
, (1)

where X and Y denote two directions of the coordinate
system.

B. Image-to-image Translation Network

As showed in Fig. 1 (a), the image-to-image translation
network T is connected to the registration network and used
to translate the transformed image x̂ or ŷ into ỹ or x̃. The
translation processes can be calculated as

x̃ = GX
(
EYc (ŷ), EXs (x)

)
, ỹ = GY

(
EXc (x̂), EYs (y)

)
, (2)

where EXs and EYs denote style encoders, EXc and EYc
denote content encoders, GX and GY denote generators.
All of the encoders and generators are pre-trained using
RDM, as shown in Fig. 1 (b), based on the assumption
that images of different modalities can be disentangled into
content codes in a domain-invariant content space and style
codes in different domain-specific style spaces, the images of
different modalities can be translated by swapping the style
codes.

To train the RDM, loss function is defined as a weighted
sum of in-domain reconstruction loss Lrecon, cross-domain
translation loss Ladv , latent space reconstruction loss Llat
and cross-cycle consistency loss Lcc, i.e.,

Ltotal = λrecLrecon + λlatLlat + λccLcc + λadvLadv, (3)

where Lrecon = LXrecon + LYrecon, Llat = LCX
lat + LSX

lat +

LCY
lat +LSY

lat and Ladv = LX→Yadv +LY→Xadv . LXrecon and LYrecon
are used to evaluate the dissimilarity between reconstructed
images and original images, and respectively defined as

LXrecon = Ex∼X
∥∥GX (EXc (x) , EXs (x)

)
− x
∥∥

1
, (4)

and

LYrecon = Ey∼Y
∥∥GY (EYc (y) , EYs (y)

)
− y
∥∥

1
. (5)

LCX
lat and LSY

lat are respectively calculated as

LCX
lat =

∥∥EYc (GY(Cx, Sy))− Cx
∥∥

1
, (6)

and
LSY
lat =

∥∥EYS (GY(Cx, Sy))− Sy
∥∥

1
, (7)
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where Cx = EXc (x) denotes the content codes and Sy =
EYs (y) denotes the style codes.

To better preserve the content information, a cross-cycle
consistency loss Lcc is introduced with the following form,

Lcc = LXcc + LYcc =Ex∼X
∥∥GX (EYc (v) , EXs (u)

)
− x
∥∥

1
+

Ey∼Y
∥∥GY (EXc (u) , EYs (v)

)
− y
∥∥

1
,
(8)

where u = GX (Cy, Sx) and v = GY (Cx, Sy). The adver-
sarial losses LX→Yadv and LY→Xadv are adopted to match the
distributions of translated images and the distributions in the
target domains. For instance, the loss LX→Yadv is calculated as

LX→Yadv =ECX∼p(CX ),SX∼p(SX ) [log (1−DY(xX→Y))] +

Ey∼Y [log (DY(y))] ,
(9)

where p(Cx) and p(Sx) respectively denote the distribution
of Cy and the distribution of Sx.

C. Training Losses

After training the RDM, the encoders and generators
including EXc , EXs , EYc , EYs , GX and GY are obtained and
concatenated to the registration network. Due to network T
is capable of translating an image in domain X or Y into
an image in domain Y or X , intra-modality metrics can be
adopted to train the registration network. In this work, we
use the MSD to evaluate the dissimilarities between moving
images and translated transformed images:

MSD =
1

2|Ω|
∑
q∈Ω

[x̃(q)− x(q)]2 + [ỹ(q)− y(q)]2. (10)

In addition, to improve the learning ability and accelerate
the convergence of the registration network, we introduce a
content consistency metric in the loss function. It bases on
the intuition that the content information of the transformed
moving images should be equal to the content information of
the target images. Therefore, the content consistency metric
Lc is defined as

Lc = ||EXc (x̂)− EYc (y)||1 + ||EYc (ŷ)− EXc (x)||1. (11)

After introducing deformation fields smoothing loss
Lsmooth(φi) =

∑
q∈Ω ||∇φi(q)||2, (i = 1, 2) and

∇φi(q) =
(
∂φi(q)
∂X , ∂φi(q)

∂Y

)
, the overall loss function

L of the registration network is defined as

L = γ1Lsmooth(φ1) + γ2Lsmooth(φ2) + γ3Lc + γ4MSD.
(12)

D. Implementation Detail

The RDM is built based on the work presented in [12]
and pre-trained using paired T1w and T2w images. We set
λrec = 10, λlat = 1, λcc = 10, λadv = 1, γrec = 20,
γlat = 10, γcc = 20 and γadv = 1 in our experiments. Then,
all parameters of the EXs , EYs , EXc , EYc , GX and GY are
fixed and used in the image-to-image translation network
T . To train the registration network R, we empirically set

γ1 = 1, γ2 = 1, γ3 = 1 and γ4 = 5. Our networks are
implemented in PyTorch using Adam as optimizer with the
learning rates of 1 × 10−3 for training RDM and 1 × 10−4

for training R.

III. EXPERIMENTAL RESULTS AND EVALUATION

A. Dataset and Evaluation Metric

We use two datasets to evaluate the proposed method. The
first dataset is public available, know as IXI dataset1, consists
of almost 600 subjects and for each subject T1w and T2w
paired images were collected (image size: 256× 256× 150
mm3). The second dataset consists of 16 T1w and T2w
image pairs2 (image size: 190×230×180 mm3) and for each
image 12 subcortical structures were manually delineated.
We performed standard sequentially steps for the first dataset
including spatially adaptive non-local denoising, N4 bias
correction, and skull-stripping to extract brains [13].

Then, these two datasets were affinely aligned to the
MNI512 space. We extracted a total of 6000 paired 2D slices
on the transverse plane from 300 randomly selected image
pairs of the first dataset to train the networks T and R
(5400 for training and 600 for validation). 176 paired 2D
slices on the transverse plane of the second dataset were
extracted and used as a testing dataset. The dice similarity
coefficient (DSC) was adopted to quantify the registration
accuracy on six structures including the bilateral caudate,
bilateral putamen, and bilateral thalamus. Wilcoxon signed-
rank tests were performed to quantify the significance of all
group comparison differences.

B. Results and Discussion

To demonstrate the performance of our method, we con-
ducted the comparison experiments with other two con-
ventional state-of-the-art registration algorithms including
symmetric diffeomorphic image registration (SyN) [14] and
Elastix [15]. Mutual information was used as the cost
function in these two algorithms. Testing experiments were
performed by registering 176 T1w slices to 176 T2w slices.
Group comparison results on six structures are listed in Table
I. Evidently, tpahe registration accuracies for six structures
are superior to the SyN and the Elastix.

Specifically, for all of the six structures, the DSCs of
our proposed method are significantly higher than those of
Elastix with p-value< 1.65 × 10−3. Also, compared the
results of our method to those of SyN, the DSCs of our
method are significantly higher (p-value< 7.11× 10−23). In
addition, the mean DSC calculated across all six structures,
our method is significantly higher than those of SyN and
Elastix with p-values of 5.14× 10−14 and 4.53× 10−30. To
further demonstrate the ability of our framework in regis-
tering T2w slices to T1w slices, we used the same trained
network R to predict the deformation fields. The statistic
of DSCs from the registration results of the three methods
is reported in Fig. 2, which also shows that our approach

1http://brain-development.org/ixi-dataset/
2https://www.predict-hd.net/
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TABLE I
THE MEAN DSC FOR EACH OF THE SIX STRUCTURES AS WELL AS THE

MEAN DSC ACROSS ALL SIX STRUCTURES OBTAINED FROM SYN,
ELASTIX AND OUR METHOD. BOLD FONT INDICATES STATISTICALLY

SIGNIFICANT GROUP DIFFERENCE.

SyN Elastix Our method
R Caudate 0.640±0.228 0.815±0.124 0.847±0.051
L Caudate 0.653±0.207 0.829±0.107 0.863±0.058
R Putamen 0.508±0.303 0.764±0.187 0.868±0.052
L Putamen 0.553±0.278 0.742±0.169 0.845±0.054
R Thalamus 0.742±0.105 0.843±0.076 0.889±0.051
L Thalamus 0.771±0.136 0.840±0.095 0.890±0.061

mean 0.645±0.179 0.806±0.107 0.867±0.035

Fig. 2. A comparison of the mean DSCs of the three different methods
on the six brain structures.

achieved the highest registration accuracies. The superior
registration accuracies and the same network simultaneously
realizing the registration from T1w to T2w and T2w to T1w
demonstrated the effectiveness of the proposed image-to-
image translation network and the proposed training loss
function. In terms of the mean run time of these 352
registrations, our method is much less than SyN and Elastix
(0.07s for our method, 6.93s for SyN, and 2.81s for Elastix).

Registration results of the three methods on two repre-
sentative images, as well as the moving images and target
images, are illustrated in Fig. 3. We can note that the
registration results of our method are the closest to the target
images with the most local anatomical details preserved.
A potential reason is that the image-to-image translation
network converted the cross-modality registration problem

Fig. 3. Visualization results of the proposed method against baseline
methods.

into intra-modality one, makes the intra-modality metric
MSD can be introduced to capture more local anatomical de-
tails. Furthermore, the content consistency metric enhanced
the consistencies between the transformed images and the
target images resulting in better registration results. For
future work, we will further extend our method to 3D MRIs
registration.

IV. CONCLUSION

In this paper, we proposed a novel disentangled represen-
tations based unsupervised deformable framework for cross-
modality MRI registration. Experimental results showed the
superiority of our proposed framework against other conven-
tional approaches in terms of both accuracy and speed. This
work provides new insight for other cross-modality image
registration tasks.
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