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Abstract—Many rehabilitative exoskeletons use non-invasive
surface electromyography (sEMG) to measure human volitional
intent. However, signals from adjacent muscle groups interfere
with sEMG measurements. Further, the inability to measure
sEMG signals from deeply located muscles may not accurately
measure the volitional intent. In this work, we combined sEMG
and ultrasound (US) imaging-derived signals to improve the
prediction accuracy of voluntary ankle effort. We used a
multivariate linear model (MLM) that combines sEMG and US
signals for ankle joint net plantarflexion (PF) moment prediction
during the walking stance phase. We hypothesized that the
proposed sEMG-US imaging-driven MLM would result in more
accurate net PF moment prediction than sEMG-driven and US
imaging-driven MLMs. Synchronous measurements including
reflective makers coordinates, ground reaction forces, sEMG
signals of lateral/medial gastrocnemius (LGS/MGS), and soleus
(SOL) muscles, and US imaging of LGS and SOL muscles
were collected from five able-bodied participants walking on
a treadmill at multiple speeds. The ankle joint net PF moment
benchmark was calculated based on inverse dynamics, while the
net PF moment prediction was determined by the sEMG-US
imaging-driven, sEMG-driven, and US imaging-driven MLMs.
The findings show that the sEMG-US imaging-driven MLM can
significantly improve the prediction of net PF moment during
the walking stance phase at multiple speeds. Potentially, the
proposed sEMG-US imaging-driven MLM can be used as a
superior joint motion intent model in advanced and intelligent
control strategies for rehabilitative exoskeletons.

I. INTRODUCTION

Human ankle plantar flexors generate a large burst of
“push-off” mechanical power at the late stance phase, en-
abling the forward propulsion during walking movement. Due
to neurological disorders or injuries like spinal cord injury,
stroke, and multiple sclerosis, the weakened function or
dysfunction of plantar flexors is likely to cause a dramatic de-
crease in the “push-off” power. Consequently, these mobility
disorders considerably impair normal walking and cause poor
energy economy [1]. Recent neurorehabilitation techniques
to improve weakened ankle plantarflexion (PF) function pri-
marily focus on utilizing powered ankle exoskeletons [2], [3],
soft exosuits [4], and functional electrical stimulation (FES)
[5]. To maximize the benefits of neurorehabilitation, patients
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must be actively involved in training procedures with the
robotic devices. Effective assistance during patient training
requires intuitive human-in-the-loop control strategies. One
representative control strategy is known as assist-as-needed
(AAN) control [6], which is dependent on the accurate
determination of continuous human volitional motion in-
tention, such as muscle contraction force or joint moment.
Conventional human limb continuous intention detection is
reliant upon the human-machine-interaction measurements
from mechanical sensors, such as force or torque sensors.
The mechanical sensors are typically installed on a rigid
and bulky frame, which limits the system’s wearability and
increases susceptibility to measurement inaccuracies due to
the misalignment of the bionic joint center and human joint
center, introducing undesirable interaction forces [7].

In recent decades, non-invasive neuromuscular signals
have been investigated to estimate continuous human limb
volitional motion and motion intention. For example, by
employing a Hill-type neuromuscular model-based or model-
free (machine learning-type) calibration methods between
sEMG signals and limb mechanical functions, e.g., joint
moment [8], [9] and angular position [10], [11], human limb
continuous movement intention can be estimated in a manner
of forward dynamics. However, sEMG signals suffer from
interference or cross-talk from adjacent muscles, and cannot
measure the activity of deep layer muscles [12]. Alternatively,
two-dimensional brightness mode (B-mode) ultrasound (US)
imaging allows one to see the musculature of the targeted
muscle in vivo, and is considered as another non-invasive
neuromuscular signal that could mitigate the shortcomings
caused by using sEMG. In the literature, the most frequently
used architectural features from US images include pennation
angle [13], fascicle length [14], [15], muscle thickness (MT)
[16], [17], and cross-sectional area [18]. These features have
been used to correlate with joint mechanical functions during
isometric or isokinetic cases by using Hill neuromuscular
model (HNM)-based or model-free approaches [9], [19], [20].

So far, the literature in this field has focused on employing
uni-modal bio-signals, i.e., using either characteristics from
sEMG signals or US signals for the continuous estimation
of human limb volitional motion and intention. A recent
review study [21] made a case of fusing multiple sensing
technologies, known as multi-modal bio-signals, to improve
the accuracy of human intention estimation or prediction.
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Recent studies have shown the advantages of using dual-
modal bio-signals (sEMG and US imaging) over uni-modal
bio-signals (sEMG or US imaging) towards the volitional
ankle moment prediction in cyclic isometric dorsiflexion task
[9], cyclic isometric PF task [22], and dynamic cycling’s
PF task [19], based on either HNM or machine learning
models. However, the superior performance of using dual-
modal bio-signals during more complex functional tasks,
like periodic walking, remains unexplored. Therefore, this
study investigates a dual-modal approach, called sEMG-US
imaging-driven multivariate linear model (MLM), to predict
ankle joint net PF moment during the walking stance phase
with the consideration of both sEMG- and US imaging-
derived neuromuscular features from both lateral gastrocne-
mius (LGS) and soleus (SOL) muscles. It is hypothesized that
by using the proposed MLM, the net PF moment prediction
error will be significantly reduced compared to the sEMG-,
and US imaging-driven MLMs.

II. METHODS

A. Subjects

The study was approved by the Institutional Review Board
(IRB) at North Carolina State University (IRB number:
20602). Five young participants (3M/2F, age: 25.4±3.1 years
old, height: 1.77±0.10 m, weight: 78.0±21.1 kg) without
any neuromuscular or orthopedic disorders within the last six
months, were recruited in this study. The participants were
familiarized with the procedures and they signed an informed
consent form before participation.

B. Experimental Protocol, Data Collection and Processing

Figure 1 (a) summarizes the experimental setup for the
participants to perform static anatomical poses and dynamic
gait trials (walking speeds changing from 0.5 m/s to 1.5
m/s), and Fig. 1 (b) presents the workflow of the sEMG-
US imaging-driven MLM in calibration and prediction pro-
cedures. During all trials, the three-dimensional coordinates
of 39 retro-reflective markers positioned on the participant’s
lower extremities were recorded using a 12-camera motion
capture system (Vicon Motion Systems Ltd, Los Angeles,
CA, USA) at 100 Hz. During the dynamic gait trials, the GRF
signals were collected at 1000 Hz synchronously by using in-
ground force plates (AMTI, Watertown, MA, USA) mounted
on an instrumented treadmill (Bertec Corp., Columbus, OH,
USA). Both GRF signals and markers trajectories were low-
pass filtered with a fourth-order Butterworth filter, and the
cut-off frequencies (between 2 and 8 Hz) were determined
according to the analysis in [23]. The markers trajectories
and GRF signals from static poses and dynamic gait trials
were used for joints kinematics and kinetics calculation in
Visual 3D (C-Motion, Rockville, MD, USA).

During the dynamic gait trials, 4 wired sEMG sensors
(SX230, Biometrics Ltd, Newport, UK) were attached to
the shank skin through a double-sided tape to non-invasively
record the electrical signals from TA, LGS, MGS, and SOL
muscles at 1000 Hz synchronously through Nexus 2.9. sEMG

signals were band-pass filtered to the bandwidth between
20 Hz and 450 Hz, and then full-wave rectified and low-
pass filtered with a cut-off frequency of 6 Hz. A similar
US transducer setup was applied in the walking experiments
as described in [22]. The US radio frequency (RF) data
were recorded at 1000 frames per second synchronously with
markers trajectories, GRF, and sEMG signals by using a pulse
sequence trigger signal generated from Nexus 2.9, and then
were beamformed to get the B-mode US images as shown
in Fig. 1 (b). A commercial US imaging processing toolbox
UltraTrack [24] was applied to determine the temporal se-
quences of the LGS and SOL muscles’ thickness based on the
adaptive optical flow tracking algorithms. First, one region
of interest that encompassed the LGS and SOL muscles
was selected as the area between the superficial and deep
aponeuroses. Then, 10 vertical lines were manually defined
with evenly distributed distances in the LGS’s region and
SOL’s region on the first US imaging frame, respectively, as
shown in Fig. 1 (b). Key-frame correction [24] was applied
to minimize the time-related drift of MT’s cyclical pattern
over the 20-second walking, where the key-frames were
selected to be at heel-strike and toe-off time points. After
each correction, the new key-frame’s vertical lines positions
were determined by applying an affine transformation to the
key-frame before it. Finally, the temporal sequence of the
mean value of those 10 vertical lines’ length from LGS and
SOL muscles were calculated for LGS’s MT and SOL’s MT,
respectively. The MT signals of both LGS and SOL muscles
were then low-pass filtered with a cut-off frequency of 4 Hz.

The objective of the model calibration was to minimize
the error between the net PF benchmark (calculated by
using Visual 3D based on the inverse dynamics (ID)) and
the calibrated net PF moment from the MLM by adjusting
unknown parameters of the MLM through the least-squares
algorithm. Since human walking function results in highly
nonlinear dynamics, currently, researchers in the biomechan-
ics community believe the most accurate and efficient way
to calculate the net moment of an individual joint is based
on the ID, so we applied the ID-derived net moment as a
benchmark for models calibration. For the MLM calibration
with a single-speed mode, the ankle joint’s kinematics, ki-
netics, sEMG signals, and US imaging data from randomly
selected 10 stance phase cycles of a single speed were used.
For the MLM calibration with an inter-speed mode, the
10 stance phase cycles were composed of 2 stable cycles
from each of five walking speeds. By manually reducing the
inclusion of input channels for the MLM, we could derive the
corresponding sEMG-driven MLM and US imaging-driven
MLM. Either the single-speed modes or inter-speed mode,
each calibrated MLM together with new data sets from 2
stance phase cycles, that were not involved in the calibration
procedures, were used for MLMs-based net PF moment
prediction and evaluation under each speed.

For the evaluation of the prediction performance by using
each type MLM, the root mean square error (RMSE)
normalized to individual peak net PF moment (N−RMSE),
RMSE normalized to individual body weight (BW −
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Figure 1: (a) Illustration of walking experimental setup. (1) Instrumented treadmill with two split belts and in-ground force
plates. (2) 39 retro-reflective markers on participant’s lower body. (3) A single US transducer to image both LGS and
SOL muscles. (4) Four sEMG sensors to record signals from LGS, MGS, SOL, and tibialis anterior (TA) muscles. (5)
Ultrasound imaging machine to collect radio frequency (RF) data. (6) Computer screen to show B-mode ultrasound imaging.
(7) Computer screen to show live markers and segment links of the participant. (8) 12 motion capture cameras. (b) Schematic
illustration of the proposed sEMG-US imaging-driven MLM calibration and prediction workflow.

RMSE), and coefficient of determination (R2) values, be-
tween the predicted net PF moment and ID-calculated net PF
moment, were calculated and compared.

C. Statistical Analysis

Shapiro-Wilk parametric hypothesis test was used to de-
termine the normality of the corresponding N − RMSE,
BW − RMSE, and R2 values of each prediction step
by using the sEMG-/US imaging-/sEMG-US imaging-driven
MLMs based on the single-speed modes calibration and
inter-speed mode calibration. According to the results of
the Shapiro-Wilk test, two-way repeated-measure analysis
of variance (ANOVA) or Friedman’s tests followed by a
Tukey’s honestly significant difference tests (Tukey’s HSD)
was applied to evaluate the effect of MLMs’ category and
walking speed on those three different evaluation criteria
in the prediction with different walking scenarios. All p-
values were adjusted using a Bonferroni correction for the
Tukey’s HSD, and the significant difference level was chosen
as p < 0.05 for all statistical tests. Effect sizes were reported
as η2p and Cohen’s d for main effects from ANOVA or
Friedman’s tests and pairwise comparisons from Tukey’s
HSD, respectively.

III. RESULTS AND DISCUSSIONS

A. Ankle joint’s kinematics and kinetics, plantar flexors’
neuromuscular features during walking

Figure 2 (a) shows the mean and standard deviation (SD)
of the right ankle joint angular position, velocity, and net
moment changes across all normalized gait cycles within 20
seconds data collection at each walking speed on Sub01 (data
from other participants are very similar), where 0% represents
the instant heel-strike occurred. For this participant, there
were approximately 12, 13, 15, 17, and 19 gait cycles

during 20 seconds. Each gait cycle was segmented to the
stance phase and swing phase with an indicator that the
GRF’s z-axis value was equal to 5% of the participant’s
BW. The walking experimental results on the treadmill from
five participants show that the transition from the stance
phase to the swing phase lies between 60% and 70% of the
normalized gait cycle, as can be seen in Fig. 2 (a). Figure
2 (b) shows the processed neuromuscular features from US
imaging and sEMG signals of LGS and SOL muscles during
the stance phase at different walking speeds on Sub01. The
upper two rows present the LGS and SOL MT changes, while
the lower two rows present the muscle’s low-pass filtered
sEMG changes. By comparing the shadowed areas in Fig.
2 (b) of the same feature across speeds, we observed that
features’ deviations are higher at a slower speed, like 0.5 m/s,
than at higher speeds. This implies that keeping a consistent
gait pattern at a slower walking speed is more challenging
than at a higher walking speed. Given the similar waveforms
between each neuromuscular feature and net PF moment, we
calculated and compared the correlation coefficients between
sEMG and net PF moment, and between MT and net PF
moment, as shown in Table I. We did not observe a significant
difference in the correlation coefficients among the features
(p = 0.201) or among the walking speed (p = 0.112), which
indicated the MT and sEMG signals might have comparable
capabilities to predict net PF moment at multiple speeds.

B. Net PF moment prediction performance based on MLMs

In this subsection, the continuous ankle joint net PF
moment prediction results from the proposed sEMG-
US imaging-driven MLM and baseline sEMG-driven/US
imaging-driven MLMs are evaluated and compared. Fig. 3
shows the prediction results with the single-speed mode
and inter-speed mode calibration MLMs in a representative
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(a) Ankle joint kinematics and kinetics during normalized gait cycle

(b) Neuromuscular measurements from plantar flexors during normalized
stance cycle

Figure 2: Right ankle joint kinematics and kinetics data, and
plantar flexors’ neuromuscular measurements during walking
stance phase at different walking speeds on Sub01. The solid
lines report the mean value of each variable across all gait
cycles during the 20 seconds at each speed, and the light
shadows report the standard deviation of each variable.

walking trial at 1.0 m/s on Sub05. In Fig. 3, with the
single-speed mode calibration, the mean and SD values of
the net PF moment prediction RMSE are 14.71±0.69 Nm,
14.03±0.93 Nm, and 12.61±0.87 Nm with respective to the
sEMG-, US imaging-, and sEMG-US imaging-driven MLMs,
respectively. With the inter-speed mode calibration, the mean
and SD values of the net PF moment prediction RMSE are
16.79±0.81 Nm, 16.51±0.87 Nm, and 12.93±1.09 Nm, re-
spectively. Overall, the individual prediction RMSE values
by using the sEMG-US imaging-driven MLM are lower than
using the sEMG-driven and US imaging-driven MLMs for

both single-speed mode and inter-speed mode. To compare
the generic net PF moment prediction performance across
participants, the mean and SD values of the prediction
BW − RMSE, N − RMSE, and R2 values across five
participants are shown in Fig. 4. The subplots from (a) to (f)
rectangular box in each row represent the applied calibrated
MLMs were based on walking data with five single-speed
modes and one inter-speed mode. In each rectangular box,
like (a), the x−axis labels represent the prediction scenarios
at five different speeds. From Fig. 4, we observed that
BW −RMSE, N −RMSE, and R2 values are minimized
when the applied calibrated single-speed mode is close to the
current prediction speed scenario, regardless of the applied
MLM category. Furthermore, the calibrated inter-speed mode
can effectively constrain the BW − RMSE, N − RMSE,
and R2 values to a small variation range among all prediction
speed scenarios, regardless of the applied MLM category.

Shapiro-Wilk tests show that all N − RMSE, BW −
RMSE, and R2 values between the predicted and ID-
calculated net PF moment by applying each MLM follow
normal distribution. The results of two-way repeated-measure
ANOVA show that BW − RMSE values are significantly
affected by the calibration speed mode (main effect, p <
0.001, η2p = 0.162) and applied MLM category (main
effect, p < 0.001, η2p = 0.082), N − RMSE values are
significantly affected by the calibration speed mode (main
effect, p < 0.001, η2p = 0.142) and applied MLM category
(main effect, p < 0.001, η2p = 0.084), and also R2 values
are significantly affected by the calibration speed mode
(main effect, p < 0.001, η2p = 0.098) and applied MLM
category (main effect, p < 0.001, η2p = 0.095). The pair-
wise comparisons show that across all prediction scenarios
with every speed mode calibration, the proposed sEMG-
US imaging-derived MLM could significantly reduce the
BW −RMSE values by 14.49% (p = 0.029, d = −0.348)
and 23.84% (p = 0.004, d = −0.689), significantly reduce
the N−RMSE values by 14.58% (p = 0.012, d = −0.389)
and 23.69% (p = 0.006, d = −0.707), and increase the
R2 values by 3.71% (p = 0.063, d = 0.371) and 6.96%
(p < 0.001, d = 0.725) compared to sEMG-driven and
US imaging-driven MLMs, respectively. Furthermore, the
pairwise comparisons also show that across all prediction
scenarios with every MLM category, the inter-speed mode
calibration could reduce the BW−RMSE values by 38.74%
(p < 0.001, d = −0.922), 18.86% (p = 0.184, d = −0.390),
8.87% (p = 0.926, d = −0.237), 9.84% (p = 0.885,

Table I: Correlation coefficients (mean±SD) between each
neuromuscular feature and the net PF moment across five
participants at each walking speed.

Neuromuscular features
LGS sEMG SOL sEMG LGS MT SOL MT

Sp
ee

d
[m

/s
] 0.5 0.886 (0.019) 0.876 (0.086) 0.857 (0.052) 0.867 (0.053)

0.75 0.890 (0.058) 0.905 (0.054) 0.842 (0.024) 0.865 (0.032)
1.0 0.892 (0.066) 0.896 (0.056) 0.883 (0.063) 0.892 (0.056)

1.25 0.835 (0.096) 0.857 (0.076) 0.840 (0.034) 0.833 (0.033)
1.5 0.801 (0.124) 0.785 (0.081) 0.847 (0.018) 0.844 (0.022)
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(a) With the single-speed mode calibrated MLMs

(b) With the inter-speed mode calibrated MLMs

Figure 3: Net PF moment prediction comparison by using
sEMG-/US imaging-/sEMG-US imaging-driven MLMs at 1.0
m/s walking speed on Sub05. The red, blue, green, and black
lines with shadowed areas represent the mean and SD of
the net PF moment from ID calculation, sEMG-driven MLM
prediction, US imaging-driven MLM prediction, and sEMG-
US imaging-driven MLM prediction, respectively.

d = −0.299), and 26.57% (p = 0.004, d = −0.836),
reduce the N − RMSE values by 35.73% (p < 0.001,
d = −1.002), 17.20% (p = 0.201, d = −0.403), 9.11%
(p = 0.881, d = −0.254), 11.44% (p = 0.715, d = −0.326),
and 28.08% (p < 0.001, d = −0.817), and increase the
R2 values by 16.76% (p < 0.001, d = 0.810), 5.33%
(p = 0.307, d = 0.342), 0.04% (p = 0.996, d = 0.004),
0.31% (p = 0.921, d = 0.033), and 6.51% (p = 0.127,
d = 0.487) compared to single-speed mode calibration at 0.5
m/s, 0.75 m/s, 1.0 m/s, 1.25 m/s, and 1.5 m/s, respectively.

This study for the first time investigated the continuous an-
kle joint net PF moment prediction during the walking stance
phase, based on a dual-modal approach with the consideration
of combining sEMG- and US imaging-derived neuromuscular
features. The results from five young able-bodied participants
indicated that there was superior net PF moment predic-
tion performance by using the sEMG-US imaging-driven
MLM compared to sEMG-driven and US imaging-driven
MLMs, validating our hypothesis. The MLM calibration and
prediction in this work simplified the sophisticated HNM
calibration and prediction [9], [19], which depend on a
plethora of subjective physiological variables. Compared to
the physiology-based personalized HNM, machine learning
approaches, like MLM in this work, do not require specific
physiological meanings of the input variables, and their
training procedures are relatively simple and straightforward.
The evaluation of the MLMs’ calibration and prediction
performance was based on three criteria: BW − RMSE,
N − RMSE, and R2. In general, as reported in [25], the
results were considered excellent if the N −RMSE values

were smaller than 15%. The results in Fig. 4 show the
mean N −RMSE values are all less than 11.5% regardless
of the calibration speed modes (single-speed or inter-speed
mode) and applied MLM categories throughout those five
walking speeds scenarios, which validates the prediction
results are all excellent. As a preliminary study of the sEMG-
US imaging-driven MLM for dynamic walking on a treadmill
with multiple speeds, the results are promising and can help
overcome the challenges of joint motion intent detection in
volitional control of assistive devices. This work has extended
the preliminary results of voluntary isometric ankle PF exper-
iments [22] to dynamic walking experiments on able-bodied
participants. Further experiments on patients with impaired
plantar flexors are needed to verify the practicability of the
proposed sEMG-US imaging-driven MLM for ankle joint net
PF moment prediction.

IV. CONCLUSION

This paper investigated an sEMG-US imaging-driven
MLM to predict ankle joint net PF moment during the stance
phase at multiple walking speeds. The processed sEMG
and US imaging-derived MT signals from both LGS and
SOL muscles were used to calibrate single-speed and inter-
speed MLMs. The results obtained from five able-bodied
participants showed that on average the net PF moment
prediction RMSE was statistically significantly reduced
when using the sEMG-US imaging-driven MLM, compared
to sEMG-driven and US imaging-driven MLMs across all
participants and walking speeds. The results also showed
that the calibrated MLMs with inter-speed mode provided
more robust net PF moment prediction at different speed
scenarios than calibrated MLMs with single-speed modes.
The improved net PF moment prediction due to the use
of sEMG and US imaging’s combination could potentially
lead to improvements in human-robot-interaction and voli-
tional control of assistive devices with more advanced and
intelligent algorithms, such as AAN control with adaptive
impedance during the walking stance phase.
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