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Abstract— High-density surface electromyography (EMG)
has been proposed to overcome the lower selectivity with respect
to needle EMG and to provide information on a wide area over
the considered muscle. Motor units decomposed from surface
EMG signal of different depths differ in the distribution of
action potentials detected in the skin surface. We propose a
noninvasive model for estimating the depth of motor unit.
We find that the depth of motor unit is linearly related
to the Gaussian RMS width fitted by data points extracted
from motor unit action potential. Simulated and experimental
signals are used to evaluate the model performance. The
correlation coefficient between reference depth and estimated
depth is 0.92 ± 0.01 for simulated motor unit action potentials.
Due to the symmetric nature of our model, no significant
decrease is detected during the electrode selection procedure.
We further checked the estimation results from decomposed
motor units, the correlation coefficient between reference depth
and estimated depth is 0.82 ± 0.07. For experimental signals,
high discrimination of estimated depth vector is detected across
gestures among trials. These results show the potential for
a straightforward assessment of depth of motor units inside
muscles. We discuss the potential of a non-invasive way for the
location of decomposed motor units.

I. INTRODUCTION

Localization of active motor units in a muscle is of interest
in several research areas including neurology, muscle synergy
and prosthetic control. Some studies have been proposed
to locate the active muscle regions and motor units [1]–
[4]. The amplitude of motor unit action potential (MUAP)
is dependent on its location, size and the position of the
recording electrodes [5], [6]. It is often regarded as solving
an inverse problem to estimate the location of motor unit
based on MUAP [7], [8]. Specifically, when estimating the
depth of motor units, a few methods are proposed to learn
the relative depth for different motor units [8], [9]. It has
been shown that changing the position of the recording
electrode in the muscle fiber direction causes minor changes
in the MUAP amplitude. In contrast, when the electrode
position is changed over the skin surface in the transverse
direction, a rapid decrease in recorded amplitude can be
observed. Models are proposed by considering that the decay
of the potential in the transverse direction with respect to
the fibers is slower when the motor unit is deeper [10]–
[12]. These studies assume the electrode which detects the
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maximum peak amplitude is placed directly above the motor
unit. And the depth is only related to two detection points.
But electrodes are often placed randomly around the muscle
section with inter-electrode distance. It can’t be ensured that
the detected maximum amplitude is the theoretical maximum
amplitude for the motor unit action potential. These models
are therefore not adaptive in practice. Besides, the array of
all the electrodes placed in the transverse direction contains a
large amount of information that can be used. In the present
paper, an alternative method to estimate the depth of motor
unit from extracted parameters of MUAP is proposed and
evaluated.

II. METHOD

A. Depth model

We extracted the detection distances in the transverse
direction and the peak amplitude from the motor unit action
potential, then fitted them to a Gaussian curve in Equation 1.
The detection distance from the jth electrode’s was denoted
by la(j), the negative peak amplitude was denoted by N(j).
We assume the depth of motor unit was linearly correlated
to the Gaussian RMS width: σ. By curve fitting, we could
give a reasonable estimate of the depth.

N(j) = αe−
[la(j)−β]2

2σ2 (1)

Specifically, three steps were implemented: Firstly, we
located the electrodes row whose action potentials had the
maximum negative peak amplitude and set this row of elec-
trodes as our interest region. This row must be perpendicular
to muscle fibers (Fig. 1(a)); Secondly, all the negative peak
amplitude N(j) from each action potential were extracted.
We numbered all the detection electrodes counterclockwise
and the relative detection distance la(j) was the arc length
from the jth electrode to the 1st electrode; Lastly, all the
extracted data points were fitted to a Gaussian curve (Fig.
1(b)). For example, every point in the x-axis was separated
by inter-electrode distance (5 mm) in Fig. 1(b). The blue
point denoted the 7th electrode in Fig. 1(a). The distance
from the 1st electrode to the 7th electrode was 30 mm, the
negative peak amplitude detected by the 7th electrode was
0.594 mV. The centerline predicted the theoretical detection
point for the maximum peak amplitude using a monopolar
electrode in Fig. 1(b). The Gaussian curve width σ was used
for further analysis.
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Fig. 1. Depth modeling process. (a), Motor unit territory and its action
potentials detected from the skin surface (dotted curve): the reference depth
was calculated from its center (red dot). Muscle fibers were perpendicular
to the figure (not shown here). (b), Blue dots were the data points (la(j),
N(j)) used to fit the red Gaussian curve.

B. Simulated signal

1) Volume conductor: Two hundred motor units were
simulated based on an anatomical model that consisted of
a cylindrical volume conductor with an anisotropic muscle
layer, and isotropic bone, subcutaneous, and skin layers [13]–
[15]. The simulation parameters were reported in Table I. The
muscle had an elliptical shape, and the motor-unit territories
were circular and distributed randomly. The simulated sig-
nals were detected with circular electrodes (diameter 1mm),
arranged in a grid with 17 rows and 11 columns (17 × 11
electrodes) with 5 mm inter-electrode distance (IED).

TABLE I

Model parameters
Tissue Thickness

Skin 1 or 5 mm
Muscle 25mm

Muscle properties
Total number of motor units 200
Total number of fibers 119,634

Fiber properties
Number of fibers in a motor unit 15-1500
Muscle fiber length 120mm
Conduction velocity 4m/s

Electrode configuration
Circular(diameter) 1mm
Inter-electrode distance 5mm
Grid 11 x 17
Spatial filter Monopolar

Reference depth of motor unit referred to the radial dis-
tance from every territory’s center to the skin surface. With
an arm radius of 50 mm, the depth range of reference motor
units was 0 - 30 mm. The MUAP peak to peak amplitude
distribution associated with size and depth of motor unit was
consistent with the experimental result [5], [6]. Simulated

MUAPs were used as model input. Besides, MUAP can
not be directly obtained under experimental conditions. The
firings of motor units were firstly decomposed from surface
EMG and then used to trigger the MUAPs. To reproduce this
process, we also simulated surface EMG using the MUAPs
simulated from the volume conductor. The simulation was set
at five different constant activation levels (10%, 30%, 50%,
70%, 100%) in Table II. Each signal was the summation
result from a designated number of randomly selected motor
units.

2) Decomposition: Simulated surface EMG signals were
decomposed by convolution kernel compensation (CKC) al-
gorithm [16]. The detailed decomposition results were shown
in Table II. For example, during 10% of maximum voluntary
contraction, 105 out of 200 motor units were activated to
synthesize the surface EMG signal. Twenty-four motor units
were decomposed. Spike triggered average was used to get
the MUAPs for decomposed motor units. All the decomposed
firing trains of motor units were compared to the reference
to validate our depth calculation result. Motor unit pairs
with RoA > 0.8 (rate of agreement [17]) were considered
a successful match. For example, during 10% of maximum
voluntary contraction, nineteen motor units were matched to
the reference firing train using RoA-match method. Among
all the matched motor units, the deepest one had a depth of
17.4 mm, and a size of 277 muscle fibers.

d=25 mm

d=15 mm

d=5 mm

Fig. 2. Motor unit territories inside the cross-section of an elliptical muscle
shape. Each motor unit was represented by a dot-dash circle inside the
muscle with its radius representing different muscle fiber numbers. All of
the plotted motor units were activated, the blue ones were decomposed by
the surface EMG signal. The dash lines (depth: d) were parallel to the
theoretical skin surface (not shown here).

All of the active motor units were plotted with known
location and territories from the reference motor units in Fig.
2. The blue circles represented the decomposed motor units
that were RoA-matched to the referenced active motor units.
The light grey line indicated three different radial depths
from the skin surface (5mm, 15mm, 25mm). Although only
12% of the active reference motor units were decomposed,
80% of the decomposed motor units could be matched to the
reference. This indicated high reliability of decomposition,
and we could further implement our method to experimental
signals.
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TABLE II

CONSTANT
(%MVF)

Number of motor units RoA matched Depth (mm) Number of muscle fibersActivated Decomposed
10% 105 24 19 17.4 277
30% 169 23 20 10.2 1220
50% 200 19 15 11.4 2387
70% 200 19 13 16.0 2387
100% 200 27 15 11.5 2387

C. Experimental signal

1) Experiment protocol: Experimental high density (192
channels) surface EMG signals were recorded in one sub-
jects’ forearm during three hand gestures (Hand open, Radius
deviation, Ulnar deviation), each motion was repeated for
eight trials [18]. Three electrode grids were placed along
muscle fiber direction covering the forearm’s primary flexor
and extensor muscles to detect motor units from different
depths. Surface EMG signals were sampled at 2048 Hz,
band-pass filtered at 9-900 Hz. The subject was asked to
perform each hand gesture for 10 seconds, with a rest time
of 5 seconds in between. Only the middle 8 seconds of
data were used for further analysis. The experiments were in
compliance with the Declaration of Helsinki and approved by
the local ethical committee of Shanghai Jiao Tong University.

2) Decomposition: A total of 1316 motor units were
decomposed using CKC method [16], and the decomposed
numbers for each grid and PNR (pulse-to-noise-ratio [19])
were listed in Table III. MUAPs for each grid were spike-
triggered averaged separately.

TABLE III

Number of decomposed motor units
Grid 1 Grid 2 Grid 3 PNR (dB)

Hand open 21±3 24±2 15±3 29.3±5.5
Radius deviation 18±3 14±2 16±6 29.6±5.8
Ulnar deviation 16±3 24±3 15±3 29.2±5.5

D. Correlation analysis

The Pearson correlation coefficient was used to evaluate
the model performance. The model estimated depth was
compared to the reference depth mentioned above. All the
decompositions and analyses were implemented in MATLAB
2021b (Matlab Inc. USA).

E. Model adaptability analysis

To examine our model’s adaptability to electrodes, we
designed an electrode selection procedure. A total of k (k
= 1,2,3) detection points were randomly removed, the data
points in the removed electrodes were set to blank in Fig.
1(b) before fitting to the model. The procedure was repeated
ten times for different k.

III. RESULT

With a large number of simulated motor units, we were
able to examine the model performance. It was often very
challenging to acquire this scale of data in experimental
conditions [11]. There were two groups of simulated MUAPs
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Fig. 3. Pearson correlation coefficient between reference depth (mm) and
normalized model fitted σ. Two dotted lines separated the scatter plot into
three depth levels.

as our model input: simulated surface MUAPs (group 1) and
spike-triggered averaged MUAPs (group 2) after decompo-
sition of the simulated surface EMG signals. The correlation
coefficient between reference depth of motor unit and model
fitted σ was 0.93 for group 1 in the scatter plot of Fig. 3. We
divided the scatter plot into three different depth levels. The
correlation between reference depth and model fitted σ was
0.97 for motor units with depths not exceeding 15 mm. When
the depth increased from 15 mm to 24 mm, the correlation
dropped to 0.68. The overall correlation coefficient was
0.92 ± 0.01 within electrode selection procedure in Fig. 4.
Besides, the correlation coefficient dropped a little when the
number of removed electrodes reached three. For group 2 in
Fig. 2, the correlation coefficient between reference depth of
the matched motor units and model fitted σ was 0.82 ± 0.07.
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Fig. 4. Pearson correlation coefficient after randomly removing k electrodes
(k = 1,2,3). The x-axis represented ten different random results.

Fig. 5 showed an example of the estimated depth of
motor units decomposed during the experiment of different
hand gestures. Because there was no actual depth, the depth
information was normalized here. Each point in Fig. 5
represented one relative depth of one particular motor unit.
This example indicated that the depth distribution of motor

675



units from different hand gestures was not the same.
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Fig. 5. Scatter plot of sorted depth vector after normalization, the x-axis
corresponded to the number of decomposed motor units. Different gesture
was denoted in different colors.

IV. DISCUSSION
Motor unit action potential is one of the representative

features in discriminating motor units. It is used extensively
in tracking the same motor unit across sessions [20], [21].
It is triggered from the surface EMG signal collected from
different detection points, which means the displacement
of electrodes would cause a significant difference to it,
especially in the muscle’s transverse direction. The model
we propose is able to compensate for the displacement of
electrodes in the transverse direction. We have proved the
depth of motor unit is linearly related to the Gaussian RMS
width during the electrode selection process.

In order to learn the limitation of depth estimated from
motor unit action potential, we reproduce the entire process
by simulation, including the setting of muscle activation
levels, the acquisition of surface EMG, the decomposition of
firing trains, the spike-triggered average for MUAP, and the
depth estimation. The superimposition of action potentials
has made it hard to decompose for more and deeper motor
units. This explains the correlation decrease in Fig. 3 on
different depth levels. In the practical experiment, electrode
placement is often guided by the fiber direction of the
superficial muscle. However, for a deeper muscle with an
intersection angle, the MUAP triggered by the decomposed
firing trains is arranged in either fiber or transverse direction.
In this case, more variables will be introduced. Consequently,
in our analysis for experimental gesture signals, part of
our estimated result deteriorates more than expected. A
reasonable guess is that all depth values that exceed a certain
threshold may come from deeper muscles. Nevertheless, our
work shows a possible discriminant feature vector among
hand gestures.

REFERENCES

[1] R. A. Jesinger and V. L. Stonick, ”Processing signals from surface
electrode arrays for noninvasive 3D mapping of muscle activity,” in
Proceedings of IEEE 6th Digital Signal Processing Workshop, IEEE,
1994,pp. 57-60.

[2] E. LoPresti, R. Jesinger, and V. Stonick, ”Identifying significant
frequencies in surface EMG signals for localization of neuromuscular
activity,” in Proceedings of 17th International Conference of the
Engineering in Medicine and Biology Society, IEEE, vol. 2, 1995,pp.
967-968.

[3] J. T. Stonick, R. A. Jesinger, V. L. Stonick, and S. B.Baumann,
”Estimation and localization of multiple dipole sources for noninvasive
mapping of muscle activity,” in 1996 IEEE International Conference
on Acoustics, Speech, and Signal Processing Conference Proceedings,
IEEE, vol. 5, 1996, pp. 2912-2915.

[4] L. Mesin, ”Real time identification of active regions in muscles from
high density surface electromyogram,” Computers in biology and
medicine, vol. 56, pp. 37-50, 2015.

[5] D. P. Botelho, K. Curran, and M. M. Lowery, ”Anatomically accurate
model of EMG during index finger flexion and abduction derived from
diffusion tensor imaging,” PLoS computational biology, vol. 15,no. 8,
e1007267, 2019.

[6] K. Roeleveld, J. Blok, D. Stegeman, and A. VanOosterom, ”Volume
conduction models for surface EMG; confrontation with measure-
ments,” Journal of Electromyography and Kinesiology, vol. 7, no. 4,
pp. 221-232, 1997.

[7] E. Chauvet, O. Fokapu, and D. Gamet, ”Inverse problem in the surface
EMG: A feasibility study,” in 2001 Conference Proceedings of the 23rd
Annual International Conference of the IEEE Engineering in Medicine
and Biology Society, IEEE, vol. 2, 2001,pp. 1048-1050.

[8] K. Van Den Doel, U. M. Ascher, and D. K. Pai, ”Source localization
in electromyography using the inverse potential problem,” Inverse
Problems, vol. 27,no. 2, p. 025 008, 2011.

[9] L. Mesin and A. Troiano, ”Motor unit distribution estimation by
multi-channel surface EMG,” in 4th IET International Conference on
Advances in Medical, Signal and Information Processing-MEDSIP
2008,IET, 2008, pp. 1-3.

[10] K. Roeleveld, D. Stegeman, H. Vingerhoets, and A. V.Oosterom, ”The
motor unit potential distribution over the skin surface and its use in
estimating the motor unit location,” Acta physiologica scandinavica,
vol. 161,no. 4, pp. 465-472, 1997.

[11] J. He and Z. Luo,”A simulation study on the relation between the
motor unit depth and action potential from multi-channel surface
electromyography recordings,” Journal of Clinical Neuroscience, vol.
54, pp. 146-151, 2018.

[12] J. Hermansson Lundsberg, ”Motor unit localization using high-density
surface EMG,” 2019.

[13] D. Farina, F. Negro, M. Gazzoni, and R. M. Enoka, ”Detecting the
unique representation of motor unit action potentials in the surface
electromyogram,” Journal of neurophysiology, vol. 100, no. 3, pp.
1223-1233, 2008.

[14] D. Farina, L. Mesin, S. Martina, and R. Merletti, ”A surface EMG
generation model with multilayer cylindrical description of the volume
conductor,” IEEETransactions on Biomedical Engineering, vol. 51,no.
3, pp. 415-426, 2004.

[15] R. Merletti and D. Farina, ”Surface electromyography: physiology,
engineering, and applications.” John Wiley & Sons, 2016.

[16] A. Holobar and D. Zazula, ”Multichannel blind source separation
using convolution kernel compensation,” IEEE Transactions on Signal
Processing, vol. 55,no. 9, pp. 4487-4496, 2007.

[17] A. Holobar, M. A. Minetto, A. Botter, F. Negro, and D. Farina,
“Experimental analysis of accuracy in the identification of motor unit
spike trains from high-density surface EMG,” IEEE Trans. Neural Syst.
Rehabil. Eng., vol. 18, no. 3, pp. 221–229, 2010.

[18] C. Chen, Y. Yu, S. Ma, X. Sheng, C. Lin, D. Farina,and X. Zhu,
”Hand gesture recognition based on motor unit spike trains decoded
from high-density electromyography,” Biomedical Signal Processing
andControl, vol. 55, p. 101 637, 2020.

[19] A. Holobar, M. A. Minetto, and D. Farina, ”Accurate identification
of motor unit discharge patterns from high-density surface EMG and
validation with a novel signal-based performance metric,” Journal of
neuralengineering, vol. 11, no. 1, p. 016 008, 2014.

[20] A. Del Vecchio and D. Farina, ”Interfacing the neural output of the
spinal cord: Robust and reliable longitudinal identification of motor
neurons in humans,” Journal of neural engineering, vol. 17, no. 1,p.
016 003, 2019.

[21] E. Martinez-Valdes, F. Negro, C. Laine, D. Falla, F.Mayer, and
D. Farina, ”Tracking motor units longitudinally across experimental
sessions with high-density surface electromyography,” The Journal of
physiology,vol. 595, no. 5, pp. 1479-1496, 2017.

676


