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Abstract— Assessment of cardiovascular disease (CVD) with
cine magnetic resonance imaging (MRI) has been used to
non-invasively evaluate detailed cardiac structure and function.
Accurate segmentation of cardiac structures from cine MRI
is a crucial step for early diagnosis and prognosis of CVD,
and has been greatly improved with convolutional neural
networks (CNN). There, however, are a number of limitations
identified in CNN models, such as limited interpretability and
high complexity, thus limiting their use in clinical practice. In
this work, to address the limitations, we propose a lightweight
and interpretable machine learning model, successive subspace
learning with the subspace approximation with adjusted bias
(Saab) transform, for accurate and efficient segmentation
from cine MRI. Specifically, our segmentation framework is
comprised of the following steps: (1) sequential expansion of
near-to-far neighborhood at different resolutions; (2) channel-
wise subspace approximation using the Saab transform for
unsupervised dimension reduction; (3) class-wise entropy
guided feature selection for supervised dimension reduction;
(4) concatenation of features and pixel-wise classification
with gradient boost; and (5) conditional random field for
post-processing. Experimental results on the ACDC 2017
segmentation database, showed that our framework performed
better than state-of-the-art U-Net models with 200× fewer
parameters in delineating the left ventricle, right ventricle, and
myocardium, thus showing its potential to be used in clinical
practice.

Clinical relevance— Delineation of the left ventricular cavity,
myocardium, and right ventricle from cardiac MR images is
a common clinical task to establish diagnosis and prognosis of
CVD.

I. INTRODUCTION

Cardiovascular disease (CVD) continues to be the cause
of the largest portion of morbidity and mortality globally,
accounting for over 18 million deaths globally [1]. Assessment
of CVD with cine magnetic resonance imaging (MRI) has
been shown to provide a non-invasive way to evaluate the
detailed morphology and function of the heart. In particular,
cine MRI is considered to be the most accurate imaging
modality for assessing various quantitative parameters with
important prognostic implications.
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Segmentation of the left ventricle (LV), right ventricle
(RV), and myocardium (MYO) from cardiac cine MR
images plays an important role in characterizing clinically
important parameters [2], such as ejection fraction (EF), end
diastolic volume (EDV), end systolic volume (ESV), and
myocardial mass. These parameters, in turn, can be used to
identify disease phenotypes, stratify disease risks, and develop
diagnostic and prognostic tools [3]. In clinical practice, semi-
automated segmentation is still predominantly used, partly
due to the lack of fully-automated and accurate segmentation
tools [4], which is time-consuming and suffers from inter-
observer variability.

With the recent progress of deep learning [5], numerous
convolutional neural networks (CNN) models, e.g., U-Net
[6], have been developed, demonstrating their accuracy
in many medical image analysis tasks [7]. While deep
learning has achieved impressive results for segmentation and
classification, a number of challenges arise in developing and
deploying deep learning models for clinical applications [7].
First, CNN models typically require a large number of labeled
training datasets [5]. Sparse and inaccurate labels caused by
privacy issues and the high cost of labeling, however, lead
to difficulty in collecting sufficient and high-quality training
sample datasets [5]; with the limited training datasets, an
accurate model fitting at the training stage is challenging.
Recently, to address this, efforts have been made to generate
samples using data augmentation or adversarial training
[8], which, however, results in an unavoidable problem of
appearance shift between real and generated data. Second,
importantly, many CNN models are seen as a “black-box”
model [9], [5]. Accordingly, CNN models remain largely
elusive how a particular CNN model makes a decision and
when it can be trusted. Therefore, it is crucial to develop
an explainable model that works with a limited number of
datasets for clinical applications.

To address the aforementioned challenges, in this work,
we propose to develop a lightweight, interpretable, and fully-
automated segmentation framework with successive subspace
learning (SSL) [10]. Specifically, our framework is comprised
of the following steps: (1) sequential expansion of near-to-
far neighborhood at different resolutions; (2) channel-wise
subspace approximation using the subspace approximation
with adjusted bias (Saab) transform for unsupervised di-
mension reduction; (3) a novel class-wise entropy guided
feature selection for supervised dimension reduction; (4)
concatenation of features and pixel-wise classification with
gradient boost; and (5) conditional random field for post-
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processing.
To the best of our knowledge, this is the first attempt

at exploring the SSL framework with the Saab transform
for a segmentation task. Our framework is lightweight
and interpretable, yet achieving a superior segmentation
performance with 200× fewer parameters, compared with
state-of-the-art U-Net models.

II. METHODOLOGY

A. Fundamentals of SSL and Saab Transform

Inspired by the recent stacked design of CNN models,
the SSL principle [10] has been targeted for classifying 2D
natural images (e.g., PixelHop [11], [12]), 3D MR images
[13], and point clouds (e.g., PointHop [12]). In each layer
of SSL, the Saab transform [14], a variant of Principal
Component Analysis (PCA), is used as an alternative to
nonlinear activation, thereby alleviating the sign confusion
problem [9]. Furthermore, the Saab transform is deemed more
interpretable than nonlinear activation functions in CNNs [14],
[15], as the model parameters are computed stage-by-stage in
a feedforward manner, without backpropagation. Accordingly,
the training of our SSL-based method is more efficient and
interpretable than that of CNN models [11].

B. Our Saab-based SSL segmentation Framework

In this work, we have a 2D MR image x ∈ RH×W×1

and its corresponding label y ∈ RH×W×4, where H and W
denote the horizontal and vertical dimensions, respectively.
The channel of the gray-value sample is 1, and the label of
each pixel is encoded as a four-dimensional one-hot vector
for four tissue classes. The architecture of our framework is
illustrated in Fig. 1, as detailed below.

1) Module 1: Unsupervised Feature Selection: We first
construct I cascade SSL units and I − 1 max-pooling
operations to extract the attributes at different spatial scales
in the unsupervised Module 1. Similar to PixelHop [11], in
each SSL unit, we construct the neighboring region on the
H×W plane. For instance, in the first SSL unit, for the single-
channel data, we construct the 3 × 3 region for each pixel
position. Each of them is then flattened to a 9-dimensional
vector. With a padding operation, x is transformed to a cubic
with the size of H×W ×9. Then, the Saab transform is used
for unsupervised dimension reduction in the channel direction.
Each 9-dimensional vector is mapped to a F1-dimensional
feature vector, where F1 is a hyperparameter to control the
output dimension of the first PixelHop unit.

Specifically, the terms, direct current (DC) and alternating
current (AC), are adopted from the circuit theory. In the first
Saab transform, we configure one DC and F1− 1 AC anchor
vectors with the size of H×W ×1. Then, the c-th dimension
of f can be an affine transform of x, i.e.,

fc = aTc x+ bc, c = 0, 1, · · · , F1 − 1, (1)

and the Saab transform has a special design of the anchor
vector ac ∈ R1×(H×W×1) and the bias term bc ∈ R [14].

Fig. 1. Illustration of our proposed framework using the Saab transform,
which consists of 3 modules.

Similar to [14], we can set bc ≡ d
√
F1, d ∈ R, and divide

the anchor vector into two categories:

• DC anchor vector a0 =
1√

H ×W × 1
(1, · · · , 1)T ,

• AC anchor vector ac, c = 1, · · · , F1 − 1.
(2)

After computing f1 ∈ RH×W×F1 , we half its spacial
size with the max-pooling operation to H

2 ×
W
2 × F1 and

send to the next SSL unit. With the multi-channel input, the
neighborhood construction involves 3×3×F1 region at each
pixel position. Then, the neighborhood union is flattened to a
vector, which is further processed by the Saab transform for
dimension reduction. The detailed structure of our module 1
is provided in Table I.

With the cascaded SSL units, the neighborhood union is
correlated with more pixels of x to extract global information.
This process is similar to CNN models in that a larger
reception field is achieved in the deeper layers.

2) Module 2: Supervised Feature Selection: In what
follows, we resort to the supervised dimension reduction
based on class-wise entropy-guided feature selection to tailor
the discriminative feature for our segmentation task.

Because of the resolution deduction in each unit, we have
different spatial size of the extracted features. The features in
the later units correspond to a larger reception field (i.e., more
pixels) in x and y. To match the features in these units with
the original pixels, we resize f2, · · · , fI to the size of f1 and
denote as f2, · · · , fI . Therefore, we have f1 ∈ RH×W×C1 ,
f2 ∈ RH×W×C2 , · · · , fI ∈ RH×W×CI .

Because of the disparate importance, depending on the dif-
ferent channels for the segmentation decision, it is necessary
to make supervised feature selection. In related developments,
PixelHop++ [16] proposes to classify each channel with the
size of RH×W and select the channels with low cross-entropy
score. However, it is not applicable to segmentation as a
channel selection, since the label in the segmentation task is
pixel-wise and the feature of a pixel in each channel is only
a scalar, making it challenging to be used as a feature for a
classifier.

Instead, we propose to select the channel with the small
entropy of each class. Specifically, we would encourage the
feature of a pixel in each channel to be similar, if the label
of the corresponding pixels is the same class. We denote the

3536



TABLE I
THE DETAILED STRUCTURE OF OUR 4 CONSECUTIVE SSL UNITS

Input Size Type Filter Shape
[224× 224× 1] Saab Trans F1 kernels of 3× 3
[224× 224× F1] MaxPool (2×2)-(1×1)
[112× 112× F1] Saab Trans F2 kernels of 3× 3 for F1 channels
[112× 112× F2] MaxPool (2×2)-(1×1)
[56× 56× F2] Saab Trans F3 kernels of 3× 3 for F2 channels
[56× 56× F3] MaxPool (2×2)-(1×1)
[28× 28× F3] Saab F4 kernels of 3× 3 for F3 channels

feature of a pixel in each channel pci for the i-th pixel of a
class in the c-th channel. The entropy of a sample can be:

H =

4∑
j=1

Hj , Hj = −
∑
i

pci logpci , (3)

where we use j to index the four classes in our segmentation
task. After calculating the entropy of four classes for each
channel, we rank the entropy in descending order. Then, we
select the top 80% channels for the subsequent pixel-wise
classification task.

3) Module 3: Information fusion for segmentation and post-
processing: With the extracted features f ′2, · · · , f ′I with both
the Saab transform and class-wise entropy guided selection,
we concatenate them along with the channel dimension to get
the feature f ∈ RH×W×C . The channel dimension C is the
sum of all channels in f ′2, · · · , f ′I . Each feature vector on the
H ×W plane of f corresponding to an original pixel in x or
y. Then, we carry out the pixel-wise classification for each
of C dimensional features with a classifier. We empirically
choose the extreme gradient boosting (XGBoost) [17], which
is an optimized distributed gradient boosting library designed
to be highly efficient and flexible. XGBoost is trained to learn
the correlation of pixel-wise feature and ground truth pixel
class label in our training set.

We note that with a limited number of SSL units, it is
challenging to support the reception field to cover all of the
pixels for global perception. In contrast, too many SSL units
will lead to very low resolution in the later units, which
is not sufficient to support the pixel-wise segmentation. In
addition, the channel size of the later units will be very large,
leading to a long and indiscriminative feature vector, which
can distract the pixel-wise classification.

To balance this conflict, we propose to validate the most
effective I and adopt the well-established post-processing
tool of conditional random field (CRF) to further refine the
segmentation results and get the final results of our framework
ỹ = CRF (ŷ).

III. EXPERIMENTS

To demonstrate the performance of our Saab transform-
based SSL framework, we validated it on the Automated
Cardiac Diagnosis Challenge (ACDC 2017) database, which
contains 100 subjects. The cine MRI short-axis slices were
acquired with 1.5T or 3.0T MRI scanners. The acquired cine
MRI short-axis slices covered the LV, RV, and MYO from
the base (upper slice) to the apex (lower slice), with 5–8 mm

Fig. 2. Comparison of the segmentation results with 60 subjects for training.

TABLE II
COMPARISON OF THE DICE SCORE WITH 50 TRAINING SUBJECTS

Methods Parameters RV MYO LV Average
U-Net 5.88 M 81.45% 78.54% 90.07% 83.35%
AttenUNet 6.40 M 81.02% 78.40% 89.32% 82.91%
SSL 0.03 M 82.91% 81.83% 90.62% 85.12%

TABLE III
COMPARISON OF THE DICE SCORE WITH 60 TRAINING SUBJECTS

Methods Parameters RV MYO LV Average
U-Net 5.88 M 85.54% 78.81% 92.15% 85.50%
AttenUNet 6.40 M 85.64% 77.37% 91.29% 84.76%
SSL 0.03 M 83.89% 82.57% 91.62% 86.03%

slice thickness, 5 or 10 mm inter-slice gap and the spatial
resolution of 1.37–1.68 mm2.

For each patient, the delineations of the LV, RV, and MYO,
were obtained by two clinical experts. On average, each
subject had about 27 labeled slices. We reported the average
Dice similarity score with 30 subjects for testing, 10 subjects
for validation, and 50 or 60 subjects for training.

A. Implementation Details

All the experiments were implemented using Python on a
server with a Xeon E5 v4 CPU/Nvidia Tesla V100 GPU
with 128GB memory. We also used the widely adopted
deep learning library, Pytorch, to implement U-Net [6] and
AttnUNet [18]. For a fair comparison, we resized all of the
slices to 224× 224× 1, which was consistent with the input
of the U-Net models.

We empirically used four SSL units and set F1=5, F2=10,
F3=30, and F4=100. We note that the number of the Saab
AC filters in the unsupervised dimension reduction procedure
controls the preserved energy ratio.

B. Experimental Results

Fig. 2 shows the segmentation results of U-Net with
ResNet50 backbone and our SSL framework. We can see that
SSL is able to achieve comparable or even better performance
than the widely used U-Net models.

For quantitative evaluation, we compared the Dice similar-
ity score in Tables II and III, which used 50 or 60 subjects
for training, respectively. Note that the larger Dice similarity
score indicates the better segmentation performance. The
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Fig. 3. Sensitivity analysis of the number of SSL units for the case of
using 60 subjects in training.

TABLE IV
RESULTS OF ABLATION STUDIES WITH 60 TRAINING SUBJECTS

Methods Average DICE
SSL 86.03%
SSL without CRF 84.76%
SSL without entropy-guided feature selection 85.91%

best results are bolded. With 50 subjects for training, our
SSL framework outperformed U-Net [6] and attention-based
U-Net [18] in all of the three classes. We can observe that
with relatively limited training datasets, the performance of
the CNN models is inferior to our framework. In addition,
the statistics of the network parameters are provided and
compared in Table II. We can see that the number of
parameters of our SSL framework was about 200 times fewer
than the popular U-Net structures [6], [18]. The much fewer
parameters can largely alleviate the difficulty of a small
number of training datasets. In the case of using 60 subjects
for training, our SSL framework achieved better performance
than the U-Net based methods in the average Dice similarity
score.

C. Sensitivity Analysis and Ablation Study

With four SSL units, we achieved a state-of-the-art Dice
similarity score in both 50 and 60 training subjects settings.
The number of SSL units is important for our segmentation
framework to balance the efficiency and perception area.
The low resolution can be challenging to provide accurate
information for fine-grained pixel-wise classification. In Fig.
3, we have shown the detailed sensitivity study using different
SSL units. The standard deviation was computed with five
random choices of training and validation splits. The class-
wise entropy-guided feature selection was developed to
simplify the subsequent classification modules. In addition,
CRF was applied as a post-processing step. To demonstrate
their effectiveness, we provide the ablation study in Table IV
and the effect of CRF in Fig. 4.

IV. CONCLUSION

In this work, we presented a lightweight, interpretable, and
fully-automated SSL framework with the Saab transform to
segment the LV, RV, and MYO from cine MRI. A novel
class-wise entropy-guided feature selection was proposed to
achieve accurate segmentation. Our thorough experiments
carried out using the ACDC 2017 database with different

Fig. 4. Comparison of with or without CRF post-processing.

number of training subjects demonstrated that our framework
achieved a superior performance, compared with the U-Net-
based approaches, with about 200× fewer parameters.
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