
  

  

Abstract— 3D Ultrasound (US) contains rich spatial 

information which is helpful for medical diagnosis. However, 

current reconstruction methods with tracking devices are not 

suitable for clinical application. The sensorless freehand 

methods reconstruct based on US images which is less accuracy. 

In this paper, we proposed a network which reconstructs the US 

volume based on US images features and optical flow features. 

We proposed the pyramid warping layer which merges the 

image features and optical flow features with warping operation. 

To fuse the warped features of different scales in different 

pyramid levels, we adopted the fusion module using the attention 

mechanism. Meanwhile, we adopted the channel attention and 

spatial attention to our network. Our method was evaluated in 

100 freehand US sweeps of human forearms which exhibits the 

efficient performance on volume reconstruction compared with 

other methods. 

I. INTRODUCTION 

Ultrasound (US) imaging is a commonly used diagnosis 
imaging technology in various clinical applications, which 
combines several advantages such as real time, safe and low 
cost. But 2D US image has the disadvantage that the 
information is not intuitive enough. Compared to traditional 
2D US image, 3D US contains richer spatial information 
which is often highly desired [1]. Thus, reconstructing 3D US 
volume from a sequence of 2D US images has become one of 
the important technologies. 

Traditional methods used in 3D reconstruction usually 
combine the US probes with tracking devices. Based on the six 
degrees of freedom (6Dof) motions of all frames related to the 
first one obtained by the tracking devices, 3D volume is 
reconstructed from a sequence of frames. Common tracking 
devices contain mechanical tracking systems, optical tracking 
systems and electromagnetic tracking systems [2,3], These 
methods with tracking devices have the disadvantages such as 
not flexibility, restricted in usage scenarios and susceptible to 
interference, which are not suitable for clinical application.  

Without using tracking devices, some methods are proposed 
to reconstruct the volume only based on features extracted 
from the US images. Speckle decorrelation is one of the most 
common traditional sensorless freehand methods which 
estimates the relative transformation based on the speckle 
features of neighboring US images [4]. Meanwhile, deep 
learning methods based on convolutional neural networks 
(CNN), which are widely used in extracting images features, 
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are used in US images reconstruction. In recent years, some 
research attempts to directly estimate the inter-frame motion 
between neighboring US images using CNN which performs 
better than traditional methods [5,6,7].  

As the motion information of each pixel between 
neighboring images, optical flow is the important information 
which is frequently used in motion estimation. In US 
reconstruction, optical flow is commonly used to estimate the 
in-plane motion. What is more, some research tries to append 
the optical flow features to CNN. But these studies just simply 
concatenate the optical flow features extracted from optical 
flow extractors [8] or stack the original image and optical flow 
as input data [9], which cannot make full use of optical flow 
information.  

In this paper, we proposed a network which combines the 
optical flow features with warping operation. The operation 
warps the feature map of second image toward first one based 
on optical flow. What is more, we obtain different scales 
feature maps of US images and optical flow information while 
low-resolution levels exploit low-frequency B-mode 
information [8]. Thus, we define a pyramid warping layer 
which warping the optical flow information in pyramid levels. 
To fuse the different scales warped features of each pyramid 
level, we also use the fusion module based on attention 
mechanism. What is more, we use attention modules which 
focus on the interested regions of the feature maps. Motivated 
by the convolutional block attention module proposed in [9], 
we append the channel attention and spatial attention to our 
network. 

II. METHOD 

Our method is proposed to reconstruct US volume only 
from image sequences. Fig. 1 depicts the architecture of our 
reconstruction network. In this section, we firstly introduce the 
architecture of our network. Then, we introduce the 
implementation of pyramid warping layer and attention 
modules used in the network. Finally, we introduce the loss 
function used to improve the training process for the whole 
network. 

A.  Overall Network Structure 

The inputs of the network are two adjacent US images, and 
the size of each frame is 256×256. The network consists of two 
pathways which process the original US images and warped 
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features based on optical flow information separately. We 
adopt ResNet backbone as the feature extractor which consists 
of a Convblock and four residual blocks. In the original US 
images pathway, we just append a channel attention after 
ResNet backbone.  

In the warped features pathway, we use FlowNetCSS 
module and pyramid warping layer to compute the warped 
features based on optical flow information. The warped 
features are calculated by a decoder with pyramid architectures 
which fuses the optical flow features from different scales. 
And the shape of the outputs in pyramid warping layer is 
256×256×2. Then, same as the original US images pathway, 
we use the ResNet backbone and channel attention to compute 
the feature map of warped features pathway.  

Both pathways output a feature map which is 8×8×512. 
After concatenating these two feature maps, a spatial attention 
is followed. Then, we append a global average pooling (GAP) 
which reduces the features to a 1024-dimensional feature 
vector. Finally, the last two fully connected layers are used to 
reduce the feature vector to a 6-dimensional vector. The 
outputs of the network are 6 parameters consisting of 3 
translations parameters and 3 rotation angles.  

B. FlowNetCSS Module 

The FlowNetCSS module is part of FlowNet2.0 proposed in 
[10]. It is stacked by FlowNetC and FlowNetS [11], which use 
FlowNetC as the first block, followed by two FlowNetS blocks. 
We train the module with a fine-tuning schedule. The module 

of our network loads the weights trained by the Chairs→
Things3D schedule from [10] and then fine-tuning on our US 
images dataset. The inputs of the FlowNetCSS module are two 
adjacent US images, and the size of each frame is 256×256. 
The outputs are predicted optical flow features with 4 different 
scales (64×64×2, 32×32×2, 16×16×2, 8×8×2), which contains 
the motions information of each pixel in x dimension and y 
dimension. 

C. Pyramid Warping Layer 

Warping operation is widely used in optical flow prediction 
network, which warps the second image to the first one based 
on the predicted optical flow information. To reduce the 
number of parameters, [12] proposed to warp the features of 
the moved images instead of original images. Based on the 
coarse-to-fine scheme, we use the pyramid approach to 
combine the feature maps of different scales. Thus, we define 

a pyramid warping layer which warps the features in different 
scales and merges with the pyramid scheme. Fig. 2 depicts the 
architecture of pyramid warping layer. 

The inputs of pyramid warping layer consist of the outputs 
of FlowNetCSS module and the outputs of each residual block 
of the ResNet backbone. Both of the outputs contain 4 feature 
maps of different scales (64×64×64, 32×32×128, 16×16×256, 
8×8×512). Warping operation is defined in [12], which 
estimates the preliminary motion in the second image based on 
the intermediate optical flow information. Before warping 
operation, we use a 1×1 convolution layer to reduce the 
number of channels to 64. After normalizing the feature maps, 
we warp the 4 scales of US feature maps with the optical flow 
features with the same scales. Thus, we get 4 different scales 
of warped feature maps. 

To merge different scales of warped feature maps, we use 
upsample operation which is commonly used in decoder. 
Starting with the low-resolution features exploited from low-
frequency US images, the upsampled low-scaled feature maps 
are merged with the high-scaled feature maps based on fusion 
module using the attention mechanism [13]. The concatenated 
feature maps of 𝐹𝐴  and 𝐹𝐵  passes through a series of 
convolutions to obtain a feature map 𝐹𝐴𝐵  with 2 channels. 
Then, the weight maps of two scale features 𝑆𝐴  and 𝑆𝐵  are 
calculated using SoftMax function for each channel of 𝐹𝐴𝐵 . 
Thus, the merged feature 𝐹𝑓𝑢𝑠𝑖𝑜𝑛  is obtained as a weighted 

sum: 

𝐹𝑓𝑢𝑠𝑖𝑜𝑛 = 𝑆𝐴 × 𝐹𝐴 + 𝑆𝐵 × 𝐹𝐵                  () 

where the element-wise operation (×) are performed between 

weight maps 𝑆  and two scale features 𝐹  to get the fused 
feature map 𝐹𝑓𝑢𝑠𝑖𝑜𝑛. 

After fusing all warped features, we upsample the merged 
feature map to the original US images size which is 256×256. 
At the final layer, two 1×1 convolution layers followed by 
ReLU are used to reduce the number of channels to 2. 

D. Channel Attention and Spatial Attention 

To focus on interested regions of the feature maps, we add 
the attention mechanism to the network, which includes 
channel attention and spatial attention. These two attention 
modules separately emphasize the features along two principal 
dimensions: channel and spatial axes [9]. Fig. 1 depicts the 
architectures of channel attention and spatial attention. 

 

Fig. 1. Overview of the proposed network architecture 
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We adopt the channel attentions after ResNet backbones in 
two pathways of the network, which weights the features 
among the channels. The max pooling operation and average 
pooling operation are used to obtain the max-pooled and 
average-pooled features simultaneously. Then, the outputs of 
two pooling operations forward to the weight-shared multi-
layer perceptron (MLP). We merge the features calculated 
from average-pooled features and max-pooled features. After 
the sigmoid activation function, we get the weights of the 
features of each channel. In short, the channel attention is 
computed as: 

𝑀𝑐(𝐹) = 𝐹 × 𝛿 (𝑊(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑊(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹))) (2) 

where 𝛿 denotes the sigmoid function, 𝑊 are the weights of 
the MLP. 

The spatial attention is adopted after the concatenation of 
two pathways outputs, which emphasizes the features of each 
spatial feature map. Same as the channel attention, we 
simultaneously use max pooling operation and average 
pooling operation to calculate two 2D maps. Before the 
pooling operation, we adopt two standard convolution layers 
to reduce the number of parameters of feature maps. After the 
pooling operation, we merge the max-pooled map and 
average-pooled map with concatenate operation. With a 
standard convolution layer which reduces the number of 
channels to 1, we get a 2D spatial attention map which 
weights the spatial information of each feature map. The 
spatial attention is computed as: 

𝑀𝑆(𝐹) = 𝐹 × 𝛿(𝑓([𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹); 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)]))    (3) 

where 𝛿  denotes the sigmoid function,  𝑓  represents the 

standard convolution operation with the filter size of 1×1. 

E. Loss Function 

The loss function of the proposed network consists of two 
components, which are mean absolute error loss (𝐿𝑜𝑠𝑠𝑀𝐴𝐸) 
and transformation matrix loss (𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑛). The MAE loss is 
used to estimate the distance between six degrees of freedom 
(6Dof) and ground truth. This loss function is shown as 
equation (4). 

𝐿𝑜𝑠𝑠𝑀𝐴𝐸 =  
1

6
∑ |𝜃𝑖

𝑂𝑢𝑡 − 𝜃𝑖
𝐺𝑇|6

𝑖=1                     (4) 

where 𝜃𝑖
𝑂𝑢𝑡 and 𝜃𝑖

𝐺𝑇 are the parameters of 6Dof of output and 
ground truth. We also define a loss function to estimate the 
motion between two US image frames. This loss function is 

calculated by computing the Frobenius norm between 4×4 

transformation matrixes converted from 6Dof of output and 
ground truth. With this loss function, we can measure the 
motions of adjacent frames based on translation and rotation 
information. The loss function is based on equation (5). 

𝐿𝑜𝑠𝑠𝑇𝑟𝑎𝑛 =  𝑀𝑒𝑎𝑛( ∑‖𝑇𝐺𝑇𝑇𝑂𝑢𝑡
−1 − 𝐼‖ 𝐹)              (5) 

where 𝑇𝐺𝑇  and 𝑇𝑂𝑢𝑡  are the transformation matrixes 
computed by 6Dof of output and ground truth, 𝐼 is the 4×4 

identity matrix. 

III. EXPERIMENTS AND RESULTS 

A. Experiment Dataset and Metric 

Our dataset has 100 freehand US sweeps on human 
forearms which totally contains 19502 frames B-mode US 
images. All US sweeps are acquired on a Mindray DC 6E II 
US machine. For each frame of US images, we use the NDI 
Polaris Vicra to record the US probe positions which fixed an 
optical marker on the probe. The spatial and temporal 
calibrations of the probe are implemented by Plus Toolkit [14]. 

We use 10-fold cross validation scheme to evaluate the 
performance of models. During the experiments, we mainly 
use mean distance error and final drift error to evaluate the 
performance of reconstruction. The mean distance error is the 
mean distance of each frame between ground truth and predict 
results in one sweep, and the final drift error only calculate the 
distance of the final frame. 

B. Reconstruction Performance and Discussion 

To evaluate the effectiveness of the network our proposed 
for 3D US volume reconstruction, in this subsection, we 
compared it with other methods. Table 1 summarizes the 
reconstruction results of each method based on mean distance 
error and final drift error. 

The approach of “Linear” means that we first calculate the 
mean 6Dof vector of the training set and then apply this fixed 
vector to the testing cases. The approach of “2D CNN” is the 
method proposed in [7] which only uses a series of 2D 
convolutions. The approach of “DCL-Net” is the method 
proposed in [5] which using 3D convolutions taking multiple 
adjacent frames. “Without OF” refers to the network our 
proposed without optical flow pathway which reconstructs the 
volume with image features. “Without PWL” refers to the 
network our proposed without pyramid warping layer, which 
concatenates the US images and optical flow features in 
channel dimension as input. “Without AM” refers to the 
network our proposed without channel attention and spatial 
attention. 

As can be seen from experimental results, the method our 
proposed outperforms all other methods in 3D Ultrasound 
images reconstruction, which has the lowest values of mean 
distance error and final drift error. Depending on the results of 
first four lines in Table 1, our method has the better 
reconstruction results compared with the methods proposed in 
recent years. Compared with DCL-Net which was proposed in 
[5] in 2020, although our proposed method has the similar 
reconstruction performance in simple cases which has the 
similar values in minimize value of errors, our method 
performs better in difficult cases which has the lower values in 
maximize value of errors and average value of errors.  

  

Fig. 2. The architecture of the pyramid warping layer 
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What is more, we validate the modules used in our network 
based on the results of last four lines in table 1. Compared with 
the results of “Proposed” and “Without OF”, we validate that 
the optical flow features which contain the motion information 
of images are helpful for reconstruction. And compared with 
the results of “Proposed” and “Without PWL” which means 
the network our proposed only without pyramid warping layer, 
we validate that the pyramid warping layer our proposed is 
helpful for US reconstruction which makes use of different 
scales optical flow features effectively. Meanwhile, compared 
with the results of “Proposed” and “Without AM” which 
means the network our proposed without attention modules, 
we validate that the channel attention and spatial attention we 
adopted will promote the results of reconstruction. 

To show the effect of reconstruction, we visualize the 3D 
trajectories reconstructed of cases in testing dataset in Fig. 3, 
one good case, one poor case and one median case. As can be 
seen form the Fig. 3, the predicted reconstructions (green line) 
only severely deviate in the poor case which final drift error is 
16.82 mm. What is more, our predicted reconstructions have a 
smoother trajectory which reduce the interference of noise 
produced by jittering.  

IV. CONCLUSION 

In this paper, we have proposed a network reconstructs the 
US volume using image features and optical flow features. To 
effectively use optical flow features, we introduced the 
pyramid warping layer which combines the optical flow 
features with image features using warping operation in 
different scales. We also adopted the fusion module with 
attention mechanism which fuses the warped features in 
different pyramid levels. What is more, we appended the 
channel and spatial attention which weights the features in 
channel and spatial dimension. The results of experiments 
validated that our reconstruction network had efficient 
performance on volume reconstruction which outperformed 
state-of-the-arts. It validated that the proposed network fusing 
optical flow features with warping operation in different 
scales performed better for the task of US volume 
reconstruction. 
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TABLE I.  EXPERIMENTAL RESULTS OF DIFFERENT RECONSTRUCTION 

METHODS 

Methods 
Distance Error (mm) Final Drift (mm) 

min max avg min max avg 

Linear 4.66 14.57 7.86 6.77 26.69 14.65 

2D CNN 3.13 12.88 7.64 4.15 23.23 12.28 

DCL-Net 1.48 12.01 5.29 3.05 22.10 9.74 

Proposed 1.35 10.52 4.73 3.03 16.82 8.55 

Without 
OF 

2.03 11.70 5.73 3.36 21.34 10.51 

Without 

PWL 
1.91 10.84 5.44 4.04 20.09 10.20 

Without 
AM 

1.79 11.67 5.49 3.46 21.88 10.29 

 

 

 

Fig. 3. 3D trajectory visualization of cases in testing data. 
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