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Abstract— Perfusion maps obtained from low-dose computed
tomography (CT) data suffer from poor signal to noise ratio.
To enhance the quality of the perfusion maps, several works
rely on denoising the low-dose CT (LD-CT) images followed by
conventional regularized deconvolution. Recent works employ
deep neural networks (DNN) for learning a direct mapping
between the noisy and the clean perfusion maps ignoring the
convolution-based forward model. DNN-based methods are not
robust to practical variations in the data that are seen in real-
world applications such as stroke. In this work, we propose an
iterative framework that combines the perfusion forward model
with a DNN-based regularizer to obtain perfusion maps directly
from the LD-CT dynamic data. To improve the robustness
of the DNN, we leverage the anatomical information from
the contrast-enhanced LD-CT images to learn the mapping
between low-dose and standard-dose perfusion maps. Through
empirical experiments, we show that our model is robust both
qualitatively and quantitatively to practical perturbations in the
data.

[. INTRODUCTION

Computed tomography perfusion (CTP) imaging enables
fast quantitative diagnosis of the hemodynamic parameters
and has recently been widely established for clinical assess-
ment of acute ischemic stroke. Typical CTP scans involve
a dynamic scanning session with a bolus injection of the
contrast agent during which several consecutive CT scans
are performed. The amount of radiation exposure from a
dynamic session of CTP imaging is a cause of concern and
compromises patient safety[ 14]. With the clinics adopting the
as low as reasonably achievable (ALARA) [16] principle,
low-dose CTP imaging can lead to better diagnosis and
prognosis of several cerebrovascular pathologies. However,
lowering the dose results in degradation of the signal-to-
noise ratio (SNR) in the reconstructed CT images and
consequently, the estimated perfusion maps. Recently, there
has been an increased emphasis on reducing the ionizing
radiations without compromising the image quality [15].

Early influential works focused on estimating the perfusion
maps directly from the 4-D spatiotemporal contrast-enhanced
CT data using model-based approaches. For standard-dose
CT imaging, typically, truncated singular value decompo-
sition (TSVD) method is used to obtain the quantitative
cerebral blood flow (CBF) maps [10]. Prior works on es-
timation of improved CTP images from LD-CT data can
be categorized as: (i) regularized deconvolution to obtain
CBF maps from noisy LD-CT data; (ii) denoising/enhancing
the the LD-CT images to obtain an estimate of the SD-
CT images followed by application of TSVD algorithm to
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obtain improved CBF maps; and (iii) post-deconvolution
denoising/enhancement of the CBF maps obtained from LD-
CT images to estimate perfusion maps at standard dose.

Deep-learning methods have shown substantially improved
performance for estimating the quantitative perfusion maps
compared to other learning-based methods [8], [19]. While
such works focus on improving the quantitative accuracy of
the estimated perfusion maps from low-dose CT images or
CT perfusion maps, they do not model the convolution-based
forward process [5] and hence, are susceptible to degradation
in performance when presented with input data that deviates
from the data used for training the DNN. Robustness to
practical perturbations is critical in applications like medical
imaging where the perturbations in the data might be related
to the scanner or patient’s physiology.

Deep neural network (DNN) based methods that map from
a given source image (input) to target image (reference) often
evaluate the performance of the models on test data that are
quite similar to training data. Several works have studied the
degradation in performance of DNN models when presented
with testing data that deviates from training data [7], [11].
To improve the robustness of the DNN-based models to
solve ill-posed inverse problems, hybrid models are proposed
that leverage (i) the forward model for data consistency
(measurement space) and (ii) DNN for regularization (image
space). Such hybrid models have been studied for image
reconstruction of modalities like MRI e.g., [20], PET [6],
and have been shown to be robust to different acquisition
strategies, e.g., variations in k-space trajectory for MRI [1].
This paper proposes a novel framework that leverages the
convolution model for perfusion maps generation from low-
dose dynamic CT data. Specifically, we propose an iterative
framework that leverages the denoising capability of the
DNNs trained at a specific noise level. Additionally, we
observe that our reconstructions improve over the state-of-
the-art typically in a few (< 10) iterations.

II. METHOD
A. Forward Model for Perfusion Maps Generation

Let A(t) represent the arterial input function (AIF), deter-
mined from the set of N dynamic LD-CT data, { X7} ..
Let {X2,}V_| represent the corresponding set of dynamic
standard-dose CT (SD-CT) images. Let R,(t) denote the
unknown tissue residue function within a small region v.
R, (t) denotes the amount of residual contrast in the vascu-
lar structures. Then, the time-concentration curve C,(t) is
given by the convolution-based forward model [5] C,(t) =
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Fig. 1. Proposed iterative framework for generating perfusion maps. The
LD-CT images are averaged along the temporal dimension (to remove noise)
and utilized as a multi-channel input for the DNN to leverage the structural
information. ®*(+;-) denotes the DNN used at the ¢-th iteration.

fot A(T)R,(t — 7) dr. In the discrete setting, let the column
vectors ¢, and r,, each containing M elements obtained
at equally spaced intervals, denote the measured contrast
and the unknown residue function, respectively. Thus, the
forward model becomes ¢, = Ar,, where matrix A is
block-circulant with columns representing A(t) as described
in [18]. In the iterative setting, estimate r, is obtained based
on the convolution model as data likelihood and a suitable
regularization function D(-) yielding the objective function

7y = argmin ||Ar, — col|? 4+ AD(ry,), (1)

where \ > 0 is the regularization parameter. The CBF maps
are obtained by suitably scaling the image r, as in [4].

We use the alternate direction method of multipliers
(ADMM) algorithm with iteration-dependent DNNs acting
as regularizers to solve the above-mentioned optimization
problem. To solve Eq. 1 the ADMM update equations can
be written as follows [2]:

. P _
rf+1 = argmin |Ary — co||® + §||r,,, — (sk = uk)||27 2)

sF+L = arg min AD(s) + §||s — (r," a2, 3)
A=At 4 (gt - sE), @)
where, @* = u*/p is the scaled Lagrangian multiplier, s is

the variable splitting term used to convert the unconstrained
problem in Eq. 1 into a constrained problem. Eq. 3 corre-
sponds to proximal map of the regularizer function D(-) and
acts as a denoiser. Several works have shown that replacing
this update equation with a well-known denoiser improves
the image quality during reconstruction [2]. Since the noise
affecting the estimated CBF maps is different (due to the
underlying forward process) than typical noise distributions
(e.g., Gaussian or Poisson) that affect natural images, we
train a set of CNN denoisers to update s in Eq. 3. Further,
to overcome reducing levels of noise across the iterative
process, at the k-th iteration, we use the DNN Dfi which is
trained using CBF maps generated from CT images affected
by noise level characterized by o. The proposed framework
is illustrated in Figure 1.

Low-dose simulation. We follow the low-dose CT data-
generation process as explained in several prior works [3],
[8], [4]. Let Isp and Ipp represent the tube currents
employed for standard-dose and low-dose CT data acqui-
sitions, respectively. Similarly, let ogp and o p represent

the noise standard deviation corresponding to Isp and
I; p, respectively. Then, to generate the low-dose CT data,
{X7?,}N_, given the standard-dose images { X%, })_,, the
noise standard deviation o to be added is given by the relation
orLp = osp + o. We add Gaussian noise with suitable
standard deviation to the SD-CT images as in [3] to generate

the set of LD-CT images.

B. DNN Model

Let Y p represent the CBF map obtained using TSVD-
based deconvolution with {X7,}N_ .. Similarly, let Ysp
represent the CBF map obtained from {X7%,}. Let X.p
denote the mean of the spatio-temporal data {X7,}N_;
along the temporal direction. We use a DNN &(7; ©), for the
regression task, where © represents the network parameters
and [ represents the pair of input images X := {Yzp, Xrp}.
The regressor ®(I; ©) learns a mapping between the input
pair of images to the output image Ysp.

We use a DNN that follows a residual learning approach
and the architecture is similar to that of the DNN used in [8]
that is modified to accept a multi-channel (two-channel)
input. We employ a patch-based training, with patch-size 40
x 40, such that the noise characteristics are captured within a
patch, similar to [8]. The input and output patch sizes are the
same (by padding in the convolutional layers), and since the
network is a fully convolutional network, the DNN is capable
of handling inputs of arbitrary size during inference. The
DNN consists of 17 layers with convolutional layers, rectified
linear units as activation function, and batch-normalization
for stabilizing the training process. At each iteration of
the proposed algorithm, as the noise in the reconstructed
image (r,) keeps reducing, we employ a separate denoiser
Di, := ®9(1%,0,,07) where I denotes the input at the g-th
iteration and o9 the corresponding noise standard deviation.

III. DATA AND EXPERIMENTS

We use the contrast-enhanced dynamic CT images avail-
able as part of the ischemic stroke lesion (ISLES) challenge
2018 [12]. The dataset consists of 94 volumes of dynamic
CT images each containing varying number of axial slices
(two to eight) and time-frames (40 to 50). We consider the
provided CT data as standard-dose data, i.e., SD-CT images.
We simulated the LD-CT images by adding noise to the set of
SD-CT images as mentioned earlier. To obtain the perfusion
maps at SD and LD, first, we remove (replace with zero)
the bone regions with a threshold of 120 HU. Secondly, we
computed the AIF and VOF as detailed in [13], [9]. We add
spectral noise (to generate LD-CT) within the brain region,
and obtain corresponding perfusion (CBF) maps at SD and
LD using the TSVD-based deconvolution algorithm [18].
The SSIM between the set of SD-CBF and the set of LD-
CBF images averaged over the entire dataset was around
0.80. We denote the above-mentioned lower dosage level as
LD-1. Assuming that the CT images for perfusion imaging
are obtained with a tube current of 150 mAs (typically clinics
employ > 150 mAs [14]), the resultant noise corresponds to
a tube current of around 15 mAs. Thus, the data at LD-1
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of LD-CT images. (a5) SD-CBF: reference CBF map at standard dose.

corresponds to a dose reduction factor (DRF) of at least 10x.
We randomly select 59 subjects for training, 5 for validation,
and 30 for testing.

A. Additional data with SNR degradation

To validate the robustness of the model to data that
deviates from the training set, we generated two additional
datasets with further reduced dose compared to LD-1. We
focus on out-of-distribution data arising from two different
acquisition methods, yielding LD-CT images at lower SNR
levels LD-2 and LD-3, generated as follows.

Further reduced tube current (LD-2). As in LD-1, we
adjusted the added noise to the SD-CT images such that the
average SSIM between the SD-CBF and the LD-CBF images
averaged over the test set was around 0.78 (LD-2). This test
set corresponds to a tube current of 10 mAs which represents
a DREF of at least 15x.

Reduced number of frames (LD-3). In this case, we
downsample the LD-CT time-frames (select alternate frames)
at LD-1 by a factor of two resulting in a further 2 x reduction
in dose. Thus, effective DRF is approximately 20x. The
average SSIM between the SD-CBF and the LD-CBF images
averaged over the test set was around 0.77 (LD-3).

IV. RESULTS AND DISCUSSION

We compare our proposed method with three other meth-
ods spanning across regularized model-based and standalone
DNN methods: (i) deconvolution using TSVD in which
regularization is achieved by eliminating the singular val-
ues (of matrix A) with low-values (based on a heuristic
threshold) [10]; (ii) sparse deconvolution using a dictionary
prior, with the dictionary trained on SD-CBF images, as
described in [3] (SPD); (iii) DNN-based CBF map denoiser
(CBF-DNN), with a similar architecture as described in [8].
We employ the same train-validation-test split for all the
methods and also tune the underlying hyperparameters for all
the methods using the validation set such that we obtained
the least relative root mean squared error (RRMSE) defined
between two images A and B as RRMSE(A,B) = ||A —
B||r/||A||F, where || - || denotes the Frobenius norm. For

quantitative comparison across methods on all the three test
sets, we use the structural similarity index (SSIM) [17].

Figure 2 shows qualitative results of the predicted CBF
maps using LD-CT data corresponding to LD-1, with LD-
CBF (Figure 2 (al)) as input and SD-CBF (Figure 2 (a5))
as reference. The SPD method (Figure 2 (a2)) removes
substantial amount of noise compared to the TSVD method
(Figure 2 (a2)). While the CBF-DNN method (Figure 2 (a3))
improves substantially over the SPD method by further re-
moving noise, the predicted image from the proposed method
(Figure 2 (a4)), shows a superior recovery of structure and
contrast (especially in the subcortical regions) in addition
to further reduced noise. Most importantly, our method that
includes anatomical information from the averaged low-dose
CT images, yields images with the least residual magnitudes
(Figure 2 (b4)).

Figure 3 shows predicted CBF maps obtained using data
corresponding to LD-2 and LD-3, as detailed in Section III-
A. Both CBF-DNN and our proposed methods are evaluated
using models trained on noise-level corresponding to LD-
1. In general, the intensities in the CBF maps are lower
compared to corresponding CBF maps in Figure 2 due to fur-
ther reduced dose arising from reduced tube current (LD-2:
rows (a) and (b)) and reduced number of CT frames acquired
(LD-3: rows (c) and (d)). Similar to LD-1 (Figure 2), both
SPD (Figure 3 (a2)) and CBF-DNN (Figure 3 (a3)) remove
substantial amount of noise compared to the TSVD method
(Figure 3 (al)). On the other hand, our proposed method
(Figure 3 (a4)) shows a superior recovery of structure and
contrast (especially in the subcortical regions) in addition
to removal of noise, as highlighted in the zoomed regions
(Figure 3 (b4)). In the case of data from reduced frames,
the CBF-DNN method (Figure 3 (a3)) improves substantially
over the SPD method by producing a smoother perfusion
image. However, compared to the proposed method (Figure 3
(c4)), the CBF-DNN fails to capture certain anatomical
structures e.g., the frontal horn of the lateral ventricles (see
Figures 3 (d3)—(d5)).

Figure 4 shows the quantitative performance of all the
methods for the three different inputs discussed in this paper:
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Fig. 3. Validation on two different datasets with SNR degradation, LD-2
(rows (a) and (b) and LD-3 (rows (c) and (d)). Rows (b) and (d) show the
zoomed regions of interest indicated by the green boxes in the panels in
rows (a) and (c).
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Fig. 4. Quantitative evaluation for all methods on three different datasets
with decreasing SNR: LD-1, LD-2, and LD-3. The box plots represent the
SSIM evaluated for all the slices for each test subject.

LD-1, LD-2, and LD-3, achieving a DRF upto 20 x. The box
plots are obtained on all of the axial slices of the entire test
set. Although all the methods show a drop in performance
as we move from LD-1 to LD-3, our method offers the least
degradation across all noise-levels. For all the cases, our
method improves over CBF-DNN, and both these methods
improve significantly over SPD. The improvement of DNN-
based methods over SPD is consistent with [8].

V. CONCLUSION

This paper proposes a iterative framework that combines
the model-based deconvolution with a DNN-based regular-
izer generating CBF perfusion maps from LD-CT data. Our
novel contributions include employing (ii)) a DNN-based
regularizer in an iterative framework along with the forward
model and (ii) the anatomical information from the CTP im-
ages as a multi-channel input to the DNN within the iterative
framework. Through empirical analysis, we observed that
our method leverages the LD-CT image patches along with
the LD-CBF images to provide improved stability (during
training) and robustness (during inference). The proposed

framework provides improved CBF maps for severe reduc-
tion in the tube current (upto 20x) both qualitatively and
quantitatively compared to the state of the art. Our method
demonstrated improved robustness to practical perturbations
in the data from two additional acquisition scenarios, i.e.,
reduced tube current and reduced number of CT frames.
Future works call for a detailed clinical validation, ablation
studies, and evaluation on other out of distribution data.
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