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Abstract— Gastroendoscopy has been a clinical standard for
diagnosing and treating conditions that affect a part of a
patient’s digestive system, such as the stomach. Despite the
fact that gastroendoscopy has a lot of advantages for patients,
there exist some challenges for practitioners, such as the lack
of 3D perception, including the depth and the endoscope pose
information. Such challenges make navigating the endoscope
and localizing any found lesion in a digestive tract difficult.
To tackle these problems, deep learning-based approaches
have been proposed to provide monocular gastroendoscopy
with additional yet important depth and pose information.
In this paper, we propose a novel supervised approach to
train depth and pose estimation networks using consecutive
endoscopy images to assist the endoscope navigation in the
stomach. We firstly generate real depth and pose training data
using our previously proposed whole stomach 3D reconstruction
pipeline to avoid poor generalization ability between computer-
generated (CG) models and real data for the stomach. In
addition, we propose a novel generalized photometric loss
function to avoid the complicated process of finding proper
weights for balancing the depth and the pose loss terms, which
is required for existing direct depth and pose supervision
approaches. We then experimentally show that our proposed
generalized loss performs better than existing direct supervision
losses.

I. INTRODUCTION

Gastroendoscopy is one of the golden standards for finding
and treating abnormalities inside a patient’s digestive tract,
including the stomach. Even though gastroendoscopy gives
enormous advantages for the patient, such as no need for
invasive surgeries, it is known that there exist some chal-
lenges for medical practitioners, such as the loss of depth
perception and the difficulty in assessing the endoscope
pose. These challenges lead to difficulties in navigating and
understanding the scene captured by the endoscope system,
making the localization of a found lesion hard for the
practitioners.

Previous studies have proposed to reconstruct the 3D
model of a whole stomach with its texture [1]–[3] to provide
a global view of the stomach and the estimated endoscope
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trajectory. It enables medical practitioners to perform a
second inspection with more degree of freedom after an
initial gastroendoscopy procedure. While the whole stomach
3D reconstruction provides the depth and the endoscope
trajectory, the methods [1], [2] cannot be done alongside the
gastroendoscopy procedure in real-time.

Recent developments in endoscopy systems introduce a
stereo camera to provide real-time depth information [4]–[7].
While the stereo endoscope solves the lack of depth percep-
tion, a monocular endoscope is still the mainstream system
in clinical practice. As an alternative to the stereo endoscope,
deep learning-based approaches have been proposed to pro-
vide depth information for monocular endoscopy [8]–[10].

To effectively tackle the endoscope navigation and the
lesion localization challenges, only providing depth infor-
mation is not enough. Both continuous depth and pose
information are needed to address these challenges appro-
priately. Both supervised and self-supervised deep-learning-
based approaches are heavily adopted to address simultane-
ous depth and pose estimation [11]–[15]. A commonly used
supervision approach is to take the direct Euclidean distance
losses for the predicted depth and pose in comparison with
the respective ground truths or references [11], [13]. In this
approach, computer-generated (CG) and/or phantom models
are commonly used for the training of depth and pose
estimation networks, affecting the network generalization
between CG and real data. In addition, the direct supervision
approach needs balancing weights for depth and pose loss
terms, which are difficult to search [16].

As a self-supervised approach, the study [12] uses consec-
utive frames as the inputs to train the network to simultane-
ously predict depth and pose by minimizing the photometric
error of a view synthesis problem (image warping between
consecutive frames based on the predicted depth and pose).
Using the same principle, the study [14] trains a recurrent
neural network to predict the depth and the pose and uses
them as the inputs for standard SLAM [17] for further
refinement. Since it needs an additional hand-crafted method
bootstrapped to the network architecture, this approach is
not trainable in an end-to-end manner. Even though a self-
supervised training approach does not need labeled data for
training and thus it is generally more convenient to train, its
performance is yet to beat the supervised approach.

In this paper, we propose a supervised approach to simul-
taneously train depth and pose networks using consecutive
images for monocular endoscopy of the stomach. To avoid
the generalization problem between CG and real data, we
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(a) Network structure [18]. (b) Self-supervised
photometric loss [18].

(c) Direct depth and pose
supervision [10], [11] +

photometric loss.

(d) Proposed generalized
photometric loss.

Fig. 1: The network structure which consists of depth and pose estimation networks is shown in (a). Figures (b)-(d) show
the comparison between the existing self-supervised photometric loss, the existing direct depth and pose supervision loss,
and our proposed generalized photometric loss. In both (c) and (d), the loss in the purple-colored box is used for training the
depth estimation network and the loss in the pink-colored box is used for training the pose estimation network. The existing
depth and pose supervision approach trains the depth and the pose estimation networks by directly taking the Euclidean
distance between the predicted depth and its reference and also between the predicted pose and its reference, respectively.
This direct supervision approach needs balancing the weights for each loss term, which are difficult to search, because their
physical meanings are different. In our proposed generalize loss, we adjusted our loss terms so that each of them has the
same physical meaning, i.e., the photometric error. This generalization eliminates the need for the balancing weight search.

apply the whole stomach 3D reconstruction pipeline [2] to
generate reference depth and pose from real endoscope data
for network training. Additionally, we propose a novel loss
generalization by unifying the depth and the pose losses
into a photometric error loss for our supervised training to
avoid the necessity of delicate weight balancing between
the depth and the pose losses. Finally, we show that our
supervised training with a novel generalized loss function
has better performance than the existing direct depth and
pose supervision. Our method achieves up to 60fps at test
time for depth and pose predictions.

II. MATERIALS AND METHODS

Figure 1(a) overviews the network structures used in
our experiment and Figure 1(b)-(d) show how we train
them using three different methods, i.e., an existing self-
supervised photometric loss [18], an existing direct depth
and pose losses [10], [11] combined with the photometric
loss, and our proposed generalized photometric loss. In this
section, we firstly explain the endoscope dataset (Section II-
A). We then review the existing self-supervision and direct
supervision methods (Section II-B, II-C). Finally, we explain
our proposed loss generalization (Section II-D).

A. Training data generation
In this work, we used the same endoscope video dataset

from our previous work [2]. We used six subjects’ endoscope
videos undergone general gastroendoscopy procedure. We
then extracted all the image frames from all the videos and
used them as training and testing data. The experimental
protocol was approved by the research ethics committee
of Tokyo Institute of Technology and Nihon University
Hospital.

Fig. 2: Some examples of the generated reference depth
based on the estimated camera poses and the obtained whole
stomach 3D model using [2]. We can see that the generated
reference depth images reflect the structures seen in the color
images.

For the direct supervision (Section II-C) and the proposed
loss generalization (Section II-D) methods, we used the
previously extracted real endoscope image frames to generate
the reference depth and pose. For this purpose, we firstly
applied the whole stomach 3D reconstruction pipeline [2]
and then extracted the reference depth and pose from the
generated whole stomach 3D model and the estimated en-
doscope poses. Figure 2 shows some of the RGB images
and the generated reference depths. We used the generated
reference depth and pose for both training and testing.

B. Self-supervised depth and pose estimation

Our depth and pose estimation networks are inspired
by monodepth2 architecture [18] shown in Figure 1(a). It
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consists of two separate networks, each for depth and pose
estimation purpose. Both networks are trained together to
learn a view-synthesis problem, i.e., to predict the appearance
of a target image given a view point of another image by
minimizing its photometric error.

Let It be a target frame and It′ be a source frame. The
objective of the network is to minimize a photometric error
pe between a target frame and a warped source frame. In
general, a photometric error pe between two images A and
B can be defined using pixel value difference (L1) and
structural similarity index measure (SSIM) [19] such that

pe(A,B) =
α

2
(1− SSIM(A,B)) + (1− α)‖A−B‖1 (1)

where α is the balancing term between the L1 and the SSIM
terms. Let D̂t be the predicted depth of the target frame It,
T̂t→t′ be the predicted relative pose from the target frame
It to the source frame It′ , and K be a calibrated camera
intrinsic parameters. We then define the view synthesis
(image warping) problem as

It′→t = ε(It′ , π(D̂t, T̂t→t′ ,K)) (2)

where π is a function to project the pixel coordinate of
target image It in source image It′ and ε is a pixel sampling
function based on the projected pixel coordinate given by π.
In our implementation, we used two consecutive frames as
our source frames, i.e., It+1 and It−1. Instead of averaging
the photometric error pe for each warped source frame,
we simply take the minimum such that the final pixel-wise
photometric error can be expressed as

Lp = min
t′∈(t+1,t−1)

pe(It, It′→t) (3)

To ensure that only the reliable pixels are optimized, we
masked out the non-reliable pixel using the automask [18]
defined by a logical operation as

µ = [ min
t′∈(t+1,t−1)

pe(It, It′→t) < min
t′∈(t+1,t−1)

pe(It, It′)]

(4)
We also used edge-aware smoothness so that there is no dis-
continuities in the predicted depth [20] that can be expressed
as

Ls = |∂xd̂∗t |e−|∂xIt| + |∂yd̂∗t |e−|∂yIt| (5)

where ∂x and ∂y is the partial derivative on each x and y
direction and d̂∗t is the mean-normalized predicted inverse
depth [21]. The final self-supervised loss function consists
of the masked photometric error and the smoothness term as

Lun =
1

N

N∑
i

µiLi
p + λLi

s (6)

where i represents a pixel index, N is the total number
of the pixels, and λ is the balancing weight between the
photometric error and the depth smoothness loss.

C. Supervised depth and pose estimation

To supervise the depth estimation network, we followed
the method [22] and used inverse depth d instead of depth
D. We followed a standard inverse depth error loss function
which compares the inverse depth prediction d̂t and its ref-
erence inverse depth dt. It consists of three sub-components
which can be formulated as follows

Ld = |d̂t − dt|, (7a)

Lg = |∂x(d̂t, dt)|+ |∂y(d̂t, dt)|, (7b)

LSSIM =
1− SSIM(d̂t, d)

2
(7c)

The total loss for depth supervision can finally be expressed
as

Ldt
=

1

N

N∑
i

0.1Li
d + Li

g + Li
SSIM. (8)

For the pose estimation supervision, the common practice
is to directly supervise the pose estimation network by
measuring Euclidean distance between the predicted relative
pose and its reference pose [11], [16], [23], i.e.,

Lt→t′

pose = ζ‖x̂t→t′ − xt→t′‖2 + θ‖r̂t→t′ − rt→t′‖2 (9)

where x is the translation vector component and r is the
rotation vector components in the axis-angle representation
from the relative pose Tt→t′ . The translation and rotation
terms are balanced by ζ and θ as weights. To tie Ld and
Lpose together, a photometric loss Lp is added to the direct
supervision loss. Finally, the total supervised loss can be
expressed as

Lsu =
1

N

N∑
i

(ψµiLi
p + γLi

dt
) +

∑
j∈t′
Lt→j
pose (10)

where ψ and γ are balancing weights for depth and pose
losses.

D. Loss generalization

Since each of the components in (10) in the commonly
used supervised loss has different physical meaning, the
weight of each component has to be carefully selected,
which is very difficult and usually performed in an empirical
manner. It is also common that different weight balancing
is needed for different kinds of environment such as out-
door and indoor scenes [16]. To address this limitation, we
propose a novel depth and pose supervision loss function
by generalizing the depth and the pose errors into the same
physical meaning, i.e, a photometric error.

As illustrated in Figure 1(d), in order to generalize the loss
into a photometric error, we use the reference relative pose
Tt→t′ to train the depth estimation network by optimizing
the predicted depth D̂t such that

Ld→p = min
t′∈(t+1,t−1)

pe(It, ε(It′ , π(D̂t, Tt→t′ ,K))) (11)
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Fig. 3: Some examples of depth estimation results. Here we show the RGB images for better visualization, though we actually
used red channel images as the input of the network according to the finding in [2]. We compare the depth prediction results
of the self-supervision [18], the direct supervision [11], [16], and our proposed generalized loss supervision. As we can
see, our proposed method not only estimates closer depth to the reference, but also better estimates the structures and the
boundaries, including the endoscope rod. In some cases, the direct supervision results are too smooth.

Conversely, we use the reference depth Dt to train the pose
estimation network by optimizing the predicted relative pose
T̂t→t′ such that

Lr→p = min
t′∈(t+1,t−1)

pe(It, ε(It′ , π(Dt, T̂t→t′ ,K))) (12)

The term described in (11) can be defined as depth loss w.r.t
reference pose as photometric loss while the term described
in (12) as pose loss w.r.t reference depth as photometric
loss. We also calculate the reliable pixel masks, µd→p and
µr→p, for each Ld→p and Lr→p respectively using the same
principle as (4).

Combining (11) and (12) with (3) to tie the depth and the
pose network training together, we can write the final loss
function as

Lgen =
1

N

N∑
i

(µi
d→pLi

d→p + µi
r→pLi

r→p

+ µiLi
p + λLi

s︸ ︷︷ ︸
Lun (6)

)
(13)

which eliminates the intricate search of balancing weights
for the depth and the pose loss terms.

III. RESULTS AND DISCUSSION

A. Implementation details

Following [18], we used ResNet-18 architecture [24] for
our depth and pose estimation networks. We simultaneously
trained our depth and pose estimation networks using a single
NVIDIA GeForce GTX 1080Ti GPU. Our networks were
trained for 100 epochs with the learning rate of 10−4 with the
decay factor of 10−1 after 50 epochs. We set the term weights
for the self-supervised and the generalized loss training as
α = 0.85 and λ = 0.001. Additionally, we set the extra
balancing weights for the direct supervision as γ = 30, ζ =
ψ = 15, and θ = 160.

We divided six subjects into four subjects for training
(Subjects 3-6, 9000 images) and two subject for testing
(Subjects 1-2, 2350 images). The image resolution is 288×
256 pixels. Following the finding of our previous research to
tackle the color channel misalignment problem [2], we used
only red channel images to train the networks.

B. Depth estimation evaluation

Figure 3 shows the subjective evaluation results. We
evaluated the relative depth error and the depth accuracy as

• Relative error: |D̂t−Dt|
Dt

• Depth accuracy: δ = max(Dt

D̂t
, D̂t

Dt
)
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Fig. 4: Comparison of the generated 3D point clouds using
the reference depth and the predicted depth by our proposed
method. As we can see, both the depth and the structure from
the predicted depth are close to the ones generated from the
reference depth.

TABLE I: Depth estimation objective evaluation.

Accuracy ↑ Relative errors ↓

Method
δ

< 1.251
δ

< 1.252
δ

< 1.253
mean max median

Test on Subject 1

Self-supervised [18] 0.374 0.703 0.838 0.635 8.812 0.286

Direct supervision [10], [11] 0.525 0.814 0.900 0.432 6.628 0.209
Generalized loss (Ours) 0.540 0.804 0.902 0.416 5.445 0.212

Test on Subject 2

Self-supervised [18] 0.477 0.767 0.867 0.472 8.673 0.227

Direct supervision [10], [11] 0.536 0.806 0.910 0.349 6.717 0.210
Generalized loss (Ours) 0.579 0.822 0.916 0.336 6.632 0.213

Test on Training data

Self-supervised [18] 0.565 0.819 0.912 0.342 3.602 0.204

Direct supervision [10], [11] 0.961 0.992 0.996 0.064 0.465 0.059
Generalized loss (Ours) 0.791 0.916 0.956 0.168 1.313 0.114

*Numbers are dimensionless

where Dt is the reference depth and D̂t is the predicted
depth. For the relative error, we calculated the errors for
all the pixels of all the frames and evaluated the mean, the
maximum, and the median values. For the depth accuracy
evaluation, we measured the ratio between the number of
pixels that have a lower error than a threshold controlled by
k (i.e., δ < 1.25k) and the total number of the pixels.

Table I shows the objective evaluation results. Since the
predicted depth is only up to scale, we scaled the predicted
depth by minimizing the average RMSE for the entire
sequence. From Table I, we can see that our proposed method
has better performance compared to the self-supervised
method by a fair margin. In addition, our proposed method
generally shows better performance compared to the direct
supervision method. Even though our proposed method
comes seconds in the median relative error, the values are
very close. In addition to the testing on the test data (Subject
1 and 2), we also tested each of the trained networks on the
training data. As we can see, the direct supervision has the
best results for this evaluation. However, it can be noticed

TABLE II: Pose estimation objective evaluation.

Rotation error ↓ Translation error ↓
Method mean max median mean max median

Test on Subject 1

Self-supervised [18] 0.562 0.809 0.519 0.253 0.531 0.211

Direct supervision [10], [11] 0.579 0.887 0.539 0.274 0.555 0.226

Generalized loss (Ours) 0.458 0.714 0.426 0.222 0.471 0.178
Test on Subject 2

Self-supervised [18] 0.581 0.802 0.564 0.283 0.587 0.239

Direct supervision [10], [11] 0.606 0.836 0.588 0.296 0.578 0.243

Generalized loss (Ours) 0.517 0.742 0.491 0.246 0.495 0.206
Test on Training data

Self-supervised [18] 0.554 0.769 0.511 0.276 0.585 0.231

Direct supervision [10], [11] 0.195 0.324 0.172 0.116 0.265 0.093
Generalized loss (Ours) 0.385 0.544 0.355 0.182 0.371 0.154

*Numbers are dimensionless

that the performance of the direct supervision on the test data
falls sharply compared to its performance on the training
data. It shows that the depth estimation network trained with
the direct supervision has poor generalization to the data that
have never been seen during the training.

Figure 4 shows the resulting color point clouds by fusing
a single image with its predicted depth. As we can see, the
resulting point cloud from our predicted depth is very close
to the point cloud from the reference depth.

C. Pose estimation evaluation

For pose estimation evaluation, we first split the full se-
quences of Subject 1 and 2 into the groups of 150 consecutive
frames. The predicted poses were then aligned with the
reference poses using Umeyama transform [25]. We then
used absolute pose error (APE) to evaluate the translation
and rotation components of the predicted poses P̂ ∈ SE(3)
against the reference poses P ∈ SE(3). Given the absolute
relative pose between a pair of predicted pose and its ground
truth E = P−1P̂ , the translation and the rotation errors can
be defined as

APErot = ‖rot(E)− I3×3‖F (14)

APEtrans = ‖trans(E)‖2 (15)

where ‖.‖F is Frobenius norm. We then averaged all the ob-
tained APEs over all of the evaluation points. The objective
evaluation results can be seen in Table II.

From Table II, we can see that, based on the evaluation
on the test data, our proposed generalized loss has better
performance compared to the self-supervised and the direct
supervision methods. Even though it is evident that the
direct supervision has the best result when tested on the
training data, its performance drops sharply when tested on
the test data. This characteristic is consistent with the results
previously shown in the depth estimation evaluation. This
is because that the direct supervision losses induce poor
generalization performance. In addition, even without the
intricate search of the term-balancing weights, our method
could achieve the best result for the test data.

Finally, we show the trajectory prediction results in Fig-
ure 5, including the trajectory prediction result from ORB-
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Fig. 5: The predicted trajectory for a sample sequence. As we
can see, our prediction result is the closest to the reference.
ORB-SLAM [26] could only predict the poses of 16 frames
among 150 input frames.

SLAM [26]. As we can see, our prediction result is the clos-
est to the reference, while ORB-SLAM could only predict
the poses of 16 frames among the 150 input frames.

IV. CONCLUSIONS

In this paper, we have presented a novel generalized
photometric loss for learning-based depth and pose estima-
tion with monocular endoscopy. Compared to commonly
used direct depth and pose supervision losses, which have
different physical meanings for each loss term, we have
proposed the generalized loss so that each of the loss terms
has the same physical meaning, which is a photometric
error. We have experimentally shown that our generalized
loss supervision performs better than the direct depth and
pose supervision without the need for an intricate search
of term-balancing weights. We have also found that the
generalization performance from train to test data of our
proposed method is better than that of the direct supervision.
In future work, we plan to fuse both depth and pose predic-
tions from multiple frames for real-time 3D reconstruction
and use the light source information to improve the depth
and pose estimation. Additional related results be accessed
from (http://www.ok.sc.e.titech.ac.jp/res/Stomach3D/).
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