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Abstract— Pancreatic cancer poses a great threat to our
health with an overall five-year survival rate of 8%. Automatic
and accurate segmentation of pancreas plays an important
and prerequisite role in computer-assisted diagnosis and
treatment. Due to the ambiguous pancreas borders and
intertwined surrounding tissues, it is a challenging task.
In this paper, we propose a novel 3D Dense Volumetric
Network (3D2VNet) to improve the segmentation accuracy of
pancreas organ. Firstly, 3D fully convolutional architecture
is applied to effectively incorporate the 3D pancreas and
geometric cues for volume-to-volume segmentation. Then,
dense connectivity is introduced to preserve the maximum
information flow between layers and reduce the overfitting
on limited training data. In addition, a auxiliary side path
is constructed to help the gradient propagation to stabilize
the training process. Adequate experiments are conducted
on a challenging pancreas dataset in Medical Segmentation
Decathlon challenge. The results demonstrate our method
can outperform other comparison methods on the task of
automated pancreas segmentation using limited data.

Clinical relevance—This paper proposes an accurate au-
tomated pancreas segmentation method, which can provide
assistance to clinicians in the diagnosis and treatment of
pancreatic cancer.

I. INTRODUCTION

Pancreatic cancer has a high mortality rate with a low five-
year survival rate of 8%, which is the 4th most challenging
cancer of death [1]. The early diagnosis of pancreatic cancer
is difficult. Only less than 30% of patients have the opportu-
nity of surgery at the first diagnosis, and more than 70% of
patients have local progress or distant metastasis, completely
losing the opportunity of surgery. For clinicians, the key to
the diagnosis and clinical operation of pancreatic cancer is its
accurate segmentation and positioning. However, pancreatic
organs have some characteristics that make the accurate
segmentation challenging. 1) The boundary of pancreas is
blurred, and it is difficult for clinicians to delineate its bound-
ary clearly. For small pancreas tumors (diameter < 1cm),
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although there are some signal changes in imaging, it is not
easy to observe the subject with our naked eyes, which makes
the diagnosis difficult. 2) Pancreatic tumor and the sur-
rounding tissues are intertwined, and their three-dimensional
structure is irregular. Only using common scanning and
reconstruction methods cannot accurately assess the overall
appearance of pancreatic tumor, which is the objective reason
why it is difficult to be accurately segmented. Therefore,
there is an urgent need for automated and accurate pancreas
segmentation method to assist the clinicians in treatment and
diagnosis, as done in other applications [2].

At present, deep learning has achieved great success in
many difficult tasks, including medical image processing
and computer-aided diagnosis [3]. For the task of automatic
pancreas segmentation, there are also several deep learning-
based methods, which obtain promising results, such as [4]
and [5]. However, there are still challenges for applying exist-
ing segmentation algorithms to accurate automatic pancreas
segmentation, especially when there is only limited training
data.

To address these challenges, we propose a 3D Dense Vol-
umetric Network (3D2VNet) to improve the performance of
automatic pancreas segmentation. Fig. 1 shows the overview
of our method. Firstly, a 3D fully convolutional architecture
is adopted to make full use of 3D volumetric information,
which can realize effective volume-to-volume prediction.
Then, the module of dense connectivity is applied to avoid
the learning of redundant feature maps and speed up the
training of the network. In addition, a short cut is con-
structed to provide auxiliary supervision for the network
training. Compared with other 3D convolutional networks,
our 3D2VNet has fewer parameters and simpler structure,
which can prevent the overfitting with limited training sam-
ples. Adequate experiments are conducted on a challenging
pancreas dataset in Medical Segmentation Decathlon chal-
lenge [6]. The results demonstrate the superiority of our
3D2VNet.

The rest of the paper is organized as follows: Section 2
mainly introduces the related work. Section 3 presents the
our method in detail. The detailed experiments and result
analysis are presented in section 4. Section 5 concludes the
paper.

II. RELATED WORK

Pancreas segmentation is an important task in the di-
agnosis and treatment of pancreatic cancer for clinicians.
Recently, several methods have been proposed to address this
issue, and since deep learning was introduced to pancreas
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Fig. 1. The overview of our proposed 3D2VNet. 3D pancreas CT volumes are processed to segment the tumor.

segmentation, its accuracy and efficiency have been greatly
improved. In [7], in order to improve the segmentation
accuracy of small pancreas organs, Zhou et al. adopted a
predicted segmentation mask to shrink the input region and
proposed a fixed-point model. They stated that a smaller
input region can lead to more accurate segmentation. Roth et
al. [8] proposed a two-stage cascaded approach for automatic
organ segmentation from 3D computed tomography (CT)
volumes, i.e., pancreas localization and pancreas segmenta-
tion. Dmitriev et al. [9] proposed a semi-automatic segmen-
tation algorithm for pancreas with cysts, and a combination
of random walker and region growing method was adopted
to delineate the boundaries of pancreas and cysts. Chen et
al. [10] proposed a multi-scale feature fusion (MsFF) model
to segment the pancreas from CT images, which was a
well-recognized encoder–decoder framework. Zhou et al. [5]
proposed a 3D fully convolution neural network for pancreas
segmentation, called Hyper-Pairing Network (HPN), which
integrated information from different phases. Jiang et al.
[11] proposed a novel multi-phase and multi-level selective
feature fusion network (MMNet) for automated pancreas seg-
mentation, which contains a core adaptive cross refinement
(ACR) module. In order to reduce the requirements of deep
learning based pancreas segmentation methods for training
data, Wang et al. [12] introduced federated learning and
quantitatively compared it with local training methods. Man
et al. [13] proposed a deep Q network (DQN) driven method
with deformable U-Net for accurate pancreas segmentation,
which learned a context-adaptive localization policy and
extracted anisotropic features from pancreas. For segmenting
the pancreas in magnetic resonance imaging (MRI), Asatu-
ryan et al. [14] proposed a dual-stage automatic segmentation
method. In [15], Zhao et al. proposed a fully automated
two stage framework for accurate pancreas segmentation
and obtained promising results. Farag et al. [16] proposed
a novel bottom-up approach for pancreas segmentation in
abdominal CT scans, which generated a hierarchical cascade
of information propagation and consisted of four steps.

Another line of related work is 3D convolutional neural
networks (CNN), which is modified from 2D CNN to process
3D volumetric information. Çiçek et al. [17] replaced the
2D operations of previous 2D U-net architecture with 3D
counterparts for dense 3D segmentation. Dou et al. [18]
proposed an end-to-end learning and inference method, 3D
deeply supervised network (3D DSN), for automatic liver
segmentation from CT volumes. In order to improve the

accuracy, Wu et al. [19] constructed a novel joint 3D+2D
fully convolutional framework to segment the subcortical
structures from MRIs. To mitigate the noise artifact in
function magnetic resonance imaging (fMRI) data, Zhao
et al. [20] proposed a fully data-driven 3D convolutional
encapsulated Long Short-Term Memory (3DConv-LSTM)
method based on adversarial network. Inspired by them,
in this paper, we propose 3D2VNet to further improve the
accuracy of automatic segmentation.

III. METHOD

A. Dense Connectivity

Recently, CNN has outperformed the handcrafted ap-
proaches and obtained the state-of-the-art performance in the
computer vision field. For a common CNN, there are several
layers, which can be denoted as

xl = Hl (xl−1) , (1)

where xl is the output of lth layer and the xl−1 is the
output of (l − 1)

th layer, which is also the input of lth layer.
Hl represents the non-linear transformation from the output
of the previous layer, which can consist of rectified linear
units (ReLU), convolution, Batch Normalization (BN), and
pooling.

Then, in order to improve the performance, ResNet [21]
constructs a skip-connection to boost the training against the
vanishing gradients, which bypasses the non-linear transfor-
mations with an identity function:

xl = Hl (xl−1) + xl−1. (2)

It sums the identity function from later layers with the earlier
layers, which may hinder the flow of information in the
network.

In order to further improve the information flow between
different layers, DenseNet [22] introduces an idea of dense
connectivity, which implements the connections from any
layer to all subsequent layers. It can be defined as:

xl = Hl ([x0, x1, ..., xl−1]) , (3)

where [x0, x1, ..., xl−1] represents the concatenation of dif-
ferent layers. The dense connectivity can improve the flow of
information and gradients in the network to make it easy to
train. In addition, there is a growth rate referred to k feature
maps of the output in each layer, which can be set to a
small number to reduce the overfitting with smaller training
set sizes in medical image processing.
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Fig. 2. The parameters of 3D2VNet proposed. The filter size, strides,
windows, and activation functions are described.

B. The Architecture of 3D2VNet

According to the characteristic of 3D volumes, our method
adopts 3D CNN architecture to learn volumetric feature
representation. Dense connectivity is introduced to alleviate
the vanishing-gradient problem and reduce the overfitting on
tasks with fewer training samples. There are two Dense-
Blocks comprised of several layers with dense connections.
Each layer consists of convolution, BN, ReLU, max-pooling
and activation function. The details and parameters of each
layer are list in Fig. 2

IV. EXPERIMENTS AND RESULTS

A. Dataset

The pancreas dataset in Medical Segmentation Decathlon
challenge is adopted to evaluate our method [6]. There
are 421 3D portal venous phase CT volumes collected by
Memorial Sloan Kettering Cancer Center (New York, NY,
USA) and comprised of patients undergoing resection of
pancreatic masses. In each slice, the background, pancreatic
parenchyma, and pancreatic mass (cyst or tumour) were man-
ually segmented by an expert abdominal radiologist using the
Scout application. In the official challenge, 421 3D volumes
are divided into 282 volumes for training and 139 volumes
for testing. In fact, the ground truth annotation of test set is
not available. So in our experiments, only 282 pancreas CT
volumes from official train set are adopted to evaluate our
method, which are further divided into 225 training volumes
and 57 testing volumes. Some typical samples are shown in
Fig. 3

B. Implementation Details

The experiments are implemented using TensorFlow on a
NVIDIA GPU GTX2080 Super and i9-3.6GHz processors.

(a) (b) (c)

(d) (e) (f)

Fig. 3. Some typical samples of pancreas dataset. (a), (b), and (c) are
original CT volumes; (d), (e), and (f) are their ground truth annotation.

TABLE I
THE PERFORMANCE OF DIFFERENT METHODS

Method
DSC (%)

Background Pancreas Tumor Average

Med3D [24] 89.04 47.19 17.29 51.17

V-NET [25] 88.33 53.62 18.31 53.42

HC [26] 89.72 51.03 17.94 53.42

3D U-net [17] 90.88 53.85 12.14 52.90

3D2VNet (ours) 93.18 54.84 12.63 53.55

The base learning rate is set to 0.0001 and RMSProp
[23] optimizer is adopted. A simple three dimensional data
augmentation was adopted to leverage the limited training
data, which includes image flipping and the rotation with
90, 180 and 270°. Each original slice is cut into small
patches with the size of 32×32×32. Then 1,000 patches are
randomly selected to training the model and 250 patches
are used for testing. The Dice Similarity Coefficients (DSC)
of background, pancreas, and tumor are adopted as the
performance metric to evaluate the model.

C. Results and Analyses

Table I shows the results of our 3D2VNet. The pancreas
organ is small ans its boundary is blurred, so it is difficult
to segment. From the results, it can be observed that our
method can obtain promising results on the task of automated
pancreas segmentation.

In order to evaluate the effectiveness of our 3D2VNet,
we present the results of some baseline methods, as shown
in Table I. Med3D [24] is a heterogeneous 3D network and
aimed to provide a pre-trained model using 3D multi-domain
medical data. V-NET [25] is trained using the Dice overlap
coefficient between the predicted segmentation and the an-
notation. High-resolution compact (HC) network architecture
[26] investigates the efficient and flexible dilated convolution
and residual connection to improve the performance of
volumetric image segmentation. 3D U-net [17] replaces all
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2D operations in previous 2D U-net architecture with their
3D counterparts to learn 3D representation. Note that all
the comparison methods adopt the same parameters and
structures. It can be observed that our 3D2VNet can obtain
better segmentation results, suggesting that it can extract
more discriminative features to better process the medical
images.

V. CONCLUSION

In this paper, a novel 3D2VNet is proposed to improve
the performance of automated pancreas segmentation. A
3D fully convolutional network is firstly adopted to fully
incorporate the 3D information of pancreas volumes for
effective volume-to-volume prediction. In order to help the
training of network and reduce the overfitting with limited
training set sizes, the strategy of dense connectivity is further
introduced. Adequate experiments are conducted on the pan-
creas dataset in Medical Segmentation Decathlon challenge
and the results show that our 3D2VNet can outperform other
baseline models by a large margin.
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