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Abstract—Automated detection of pathology in images with
multiple pathologies is one of the most challenging problems
in medical diagnostics. The primary hurdles for automated
systems include data imbalance across pathology categories
and structural variations in pathological manifestations across
patients. In this work, we present a novel method to detect a
minimal dataset to train deep learning models that classify and
explain multiple pathologies through the deep representations. We
implement partial label learning with 1% false labels to identify
the under-fit pathological categories that need further training
followed by fine-tuning the deep representations. The proposed
method identifies 54% of available training images as optimal for
explainable classification of upto 7 pathological categories that
can co-exist in 36 various combinations in retinal images, with
overall precision/recall/Fβ scores of 57%/87%/80%. Thus, the
proposed method can lead to explainable inferencing for multi-
label medical image data sets.

Index Terms—Deep Learning, Semi-supervised Learning, La-
bel Propagation, Partial label learning, multi-label classification.

I. INTRODUCTION

Computer-aided diagnostics for retinal pathology has been
a well studied topic for over a decade now [1]. With the
surge in transfer learning applications to transfer weights
from pre-trained deep learning (DL) layers to new data sets,
the need for “new labelled data” has significantly reduced.
However, the medical domain continues to suffer from the
“small data challenge”, wherein, there is a lack of quality
annotated data. Additionally medical data often suffers from
inter-observer variability, wherein multiple annotators may
arrive at different conclusions regarding the pathological state
for the same patient owing to poor quality images or the
presence of multiple pathologies [1]. In this work, we present
a novel method to maximize the learning from the DL feature
extraction layers and to detect data dependencies while being
robust to observer variabilities, or false labels.

Prior works in [2] [3] refer to DL networks as a combination
of a trainable feature extractor followed by a classification
layer. Motivated by these existing works, we analyze the im-
pact of training data on these two DL components separately.
The three-step method presented in this work aims to optimally
train the DL feature extractor for multi-label classification.
Additionally, we identify the under-fit pathological categories
that require additional DL training and assess the fine-tuning
capability of single pathology training samples for classifica-
tion of multiple pathology images.

This paper makes two key contributions. First, we identify
a minimal training image set to classify and explain multiple
pathologies in retinal images. We apply partial label learning
(PLL) [4] [5] to identify the under-fit pathology categories
(UPC) followed by retraining the DL feature extractor on addi-
tional 100 images from UPC. Second, we present a framework
for multi-label image classification method using optimally
trained deep representations (D) such that the proposed system
achieves categorical recall and Fβ scores in the range of 68-
98% and 56-88%, respectively. Fig. 1 shows the proposed
three-step method, namely extraction of D per image from
the dense layer, followed by semi-supervised label propagation
(LP) with limited false labels to identify UPC images. Finally,
a combination of propagated labels and training data is used
to retrain the a DL network to classify and visually explain
regions of interest (ROIs) corresponding to pathological sites.

Fig. 1. The proposed method to train deep representations from the dense
layer for explainable multi-label classification.

II. METHODS AND MATERIALS

So far, incremental learning methods for multi-class clas-
sification problems have been analyzed in [2] [3] with the
intention to process data in incremental small batches. In [2], a
knowledge distillation component in the overall loss function
enables weighted learning for the deep representations and
subsequent classification. However, in multi-label scenarios,
where several combination classes can occur in incremental
batches, and when individual classes can manifest in a wide
variety of ways, the weighted training approach for deep
representations in batches requires further modification. For
instance, the retinal pathology of diabetic retinopathy (DR)
can be detected by the presence of many small red dots
(micro-aneurysms) or combination with bright lesions (hard
exudates) and red haemorrhages in different patients. Thus,
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balancing the number of images with DR with respect to other
individual pathology samples may not extract all representa-
tive features for DR. The proposed approach of fine-tuning
deep representations enables weighted learning for multi-
label classification instances. 1 Explanations of the data set,
mathematical framework and methods are presented below.

A. Data: Viet AI Retinal Challenge

The publicly available VietAI data set [6] contains 3435
annotated retinal images and 350 un-annotated images of size
[512 × 512 × 3] each, such that the labels are representative
of multiple pathology categories namely: Opacity, DR, Glau-
coma, Macular Edema (ME), Macular Degeneration (MD),
Retinal Vein Occlusion (RVO), or Normal. Exploratory data
analysis shows that the top 5 highly occurring images belong
to categories of Opacity, Normal, Glaucoma, MD and DR.
Also, 36 unique label combinations from the 7 pathological
categories and normal category exist. Here, we split the
annotated data set by 80/20, such that representations (D)
from 2748 images correspond to the training data (X , Y ),
and the remaining 687 images from the annotated set are test
data (X ′, Y ′). Finally, D from the 350 unlabelled images for
which labels will be generated by semi-supervised learning
are in X ∗. Here, D represent DL output from an additional
dense layer applied after global average pooling from the final
convolutional layers.

B. Mathematical Framework

For our analysis, we begin with a minimum subset of the
training data that can provide similar D using a DL model
as the complete training data set. This minimum subset or
fraction-f of all training images with l number of samples
is referred to as the labelled data (L) with samples X fL and
corresponding labels Y fL . The remaining images from train
data become a part of an unlabelled set (U), where U contains
u number of samples from the annotated (X 1−f

U ,Y 1−f
U ) and

un-annotated sets X ∗ combined. As a first step, we analyze
the DL classification performance using L. Next, for UPC
identification, we apply rbf kernel-based label propagation (k-
LP) [4], where, the training labels are propagated in the D
feature space to generate labels for unlabelled samples. Here,
we prefer k-LP over nearest neighbor methods since prior work
in [7] has shown that k-LP minimizes adaptive representation
and classification errors in kernel space.

k-LP initiates by the estimation of a weight affinity matrix
(W ) for all unlabelled samples (xi) with respect to the labelled
samples (xj) as follows.

Wij = e−γ||xi−xj ||2 ≥ 0,∀xi ∈ U, xj ∈ L, (1)
where, γ is an input kernel parameter. Next, a normalized
Laplacian (L) is computed from the diagonal matrix (D) that
uses W as follows.

Di =
∑
j

Wij , L = D−(1/2)WD−(1/2). (2)

1Github: https://github.com/sohiniroych/Deep-ReAP-Multi-label

Finally, label spreading is performed based on [7], wherein
the initial state includes l+u number of labels corresponding
to the labelled samples (y1, y2...) and the unlabelled samples
(assigned to placeholder label -1) referred to as Ŷ(0) =
{y1, y2.....yl,−1,−1....}. Next, the steps in (3-4) are repeated
for t iterations or until convergence.

Iterate , Ŷ(t+1) = αLŶ(t) + (1− α)Ŷ(0), (3)
∀t = [0,∞], xi −→ ŷ∞i .

Ŷ 1−f
U = Ŷ∞[l+1,l+u]. (4)

In (3), α is parameterized in range [0,1], such that a large
value indicates iterative label modifications while a small value
indicates initial label retention. The k-LP process is shown in
Fig. 2, wherein the unlabelled samples (black color in middle
column) are assigned a propagated label at the end of (3-4).

Fig. 2. Example of k-LP to generate labels for the samples U. PC1, PC2,
PC3 represent the top 3 principal components for D. Column 1, 2, 3 represent
samples from L, L+ U , L and propagated U labels, respectively.

Next, we compare the propagated labels for samples X 1−f
U

that are referred to as Ŷ 1−f
U , with their actual labels Y 1−f

U .
The pathology categories with the most error are thereby
identified as UPC. Next, we extract a limited data subset for
DL model fine-tuning from the remaining training data for
samples corresponding to UPC and some propagated samples
for set X ∗. The DL model is thus fine-tuned and analyzed for
classification performance and explainability.

The multi-label classification metrics evaluated on the test
data with n samples are in terms of correctly classified
pathology or true positives (tp), falsely classified pathology or
false positives (fp) and missed pathology or false negatives
(fn) as defined in (5-6). Here, test data labels yi ∈ Y ′ and ŷi
is the classification outcome vector with C = 7 dimensions.
The performance of trained representations D for classifying
multiple pathologies is analyzed in terms of average precision
(Pr), recall (Re), F1 and Fβ scores defined in (7-8). Since fn
are more detrimental than fp in medical diagnostics, β = 2
for (8) to ensure higher weightage to Re than Pr.

tp =

n∑
i

(yTi ŷi), fp =

n∑
i

C∑
c=1

{(ŷi(c)− yi(c)) ≥ 0}, (5)

fn =

n∑
i

C∑
c=1

{(yi(c)− ŷi(c)) ≥ 0}. (6)

Pr =
tp

tp+ fp
,Re =

tp

tp+ fn
, (7)

F1 =
2Pr.Re

Pr +Re
, Fβ =

(1 + β2)Pr.Re

(β2Pr) +Re
. (8)
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The three steps in the proposed system are described below.

C. Step 1: Initial Training of Deep Representations

The first step is training a DL model to extract network
weights and biases that can be combined with the individual
input images to extract D per sample. We implemented several
DL pre-trained models such as ResnetV2, Resnet50 and In-
ceptionV3, and observed that using the complete training data
set with 2748 images and hyper-parameterization with 80/20
cross-validation split for learning rate using Adam optimizer
in range [10−5−10−3] on all these models resulted in similar
Fβ scores in the range [0.70-0.723]. This observation further
aligns with the prior submission in [6]. Thus, we select the
InceptionV3 model with the highest Fβ to train and analyze
the classification capability of D. For DL training, the input
images are resized to [224 × 224] and zoom, width and
height shift augmentations are applied to the images. Training
proceeds with batch sizes of 20, for 40 epochs, with binary
cross entropy loss function and monitoring the Fβ score.

To identify a smaller training data subset with similar
classification performance as the complete training data, we
apply random stratified sampling to select a fraction f of
each multi-label combination from the training data. We vary
f = [0.2, 0.3, 0.4, 0.5, 0.6] and retrain the InceptionV3 model
with an additional dense layer with 512 neurons and a 7 neuron
classifier layer. We observe that for f = 0.5, Fβ = 0.722,
which is the closest in classification performance to the
complete data set. Thus, we select these 1374 images (at 50%
representation) as the initial training dataset (X fL ,Y fL ).

D. Step 2: UPC Detection by kernel-PLL

To identify the pathology categories that need further train-
ing (or UPC) we apply the PLL framework wherein we
randomly drop sample labels and apply k-LP, as shown in
[4], such that 1% of the labels from the set L are false-
labels. To achieve this, we randomly select 28 images (1%
of training data) from X fL and randomly add to or remove
from a pathology category in the label. For instance, a label
[1,0,0,1,1,0,0] can become [0,0,0,1,1,0,0] or [1,0,1,1,1,1,0,0],
etc., in different sample runs. Next, labels from L are randomly
removed and substituted for a vector with values -1 to depict
dropped label samples. We vary the fraction of randomly
dropped labels from L as p = [0.1, 0.2, ..0.8], and for each
sample run, we apply k-LP to obtain propagated labels for all
the dropped samples based on the work in [5]. The averaged
Pr, Re and Fβ metrics per pathology category are then
analyzed to detect UPC as categories that either have the
highest variation across changing values of p or that have
consistently low Fβ scores.

The PLL method with k-LP and a few false labels analyzes
the realistic scenario when inter-observer variability between
manual annotators can propagate through an automated learn-
ing system. This analysis isolates the contributions of the
learned D from the classification process for robust identi-
fication of UPC.

E. Step 3: Fine-tuned Deep Representation Analysis

Images from the under-fit categories are isolated from the
(X 1−f

U , Y 1−f
U ) data set used for fine-tuning the DL model

from Section II-C. The goal is to improve classification
performances for all pathologies. Representations D for test
data images obtained after fine-tuning are then analyzed quan-
titatively and qualitatively to explain the pathological ROIs
using the Gradcam and tf explain libraries in Python.

III. EXPERIMENTS AND RESULTS

In this work, we perform three major experiments. First,
we identify a subset UPC samples using k-PLL with false
labels. Second, we analyze the classification performances
with InceptionV3 model using the initial training dataset and
after fine-tuning with the UPC images. Third, we qualitatively
assess the ROIs for explainability of multiple patholgies in
retinal images.

A. PLL for Under-fit Data Detection

In this experiment, we implement PLL as shown in Section
II-D with and without the introduction of false labels. The
optimal γ = 5 for rbf-kernel upon cross-validation. The
variations in Pr, Re and Fβ per-category are analyzed for
varying proportions (p) of dropped labels in Fig. 3. Here,

(a) Pr, no false labels (b) Pr, with false labels

(c) Fβ , no false labels (d) Fβ , with false labels

Fig. 3. PLL curves for Pr and Fβ scores across variations in proportions
of dropped labels. Re curves have similar trends as Fβ score.

we observe that the PLL curves for p ≤ 0.5 have relatively
similar trends with and without false labels. This demonstrates
that per-pathology sample clusters are well-defined and robust
against inter-observer variability.

Also we observe that Normal and Opacity categories are
most stable across variations in p for all the metrics. This
implies that sample Ds are well trained to identify normal
retinal images and images with opacity that may have a small
disc-like appearance around the macula and blurry image
quality. Also, we observe that categories of Glaucoma, ME
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and RVO have the least Re and Fβ metrics and can be referred
to as the UPC.

B. Multi-label Classification Performance

As a next step we identify an additional fine-tuning training
set to contain {50,25,25} additional images with {Glaucoma,
ME, RVO}, respectively. Additionally, for randomization, we
add 20 random images to this set as the propagated labels
from the k-LP process for the image set X ∗. The averaged
classification performance for the initial training set and the
combination of initial training and fine-tuning sets across 20
random runs are shown in Table I. The number of training
images corresponding to each individual pathology category
are also shown here. Thus, if a training image contains Opacity
and Glaucoma, then the same image will be counted twice,
once for the category Opacity and once for Glaucoma, respec-
tively. From Table I, we observe a significant improvement in

TABLE I
AVERAGE CLASSIFICATION PERFORMANCES BY VARYING TRAINING

DATA.

Category # images Precision Recall F1 Fβ

Data: Initial Training Set
Overall 1374 0.5399 0.7887 0.641 0.7222
Opacity 631 0.6495 0.9205 0.7616 0.8496

DR 283 0.5963 0.7471 0.6633 0.7112
Glaucoma 244 0.3973 0.8018 0.5313 0.6662

ME 215 0.4678 0.7407 0.5735 0.6633
MD 225 0.3913 0.9153 0.5482 0.7219
RVO 182 0.4468 0.2593 0.3281 0.283

Normal 218 0.8864 0.78 0.8298 0.80
Data: Fine-tuned Training Set

Overall 1494 0.567 0.8773 0.6888 0.8007
Opacity 646 0.6245 0.9801 0.7629 0.8799

DR 285 0.5426 0.8046 0.6481 0.7338
Glaucoma 300 0.5 0.8288 0.6237 0.7325

ME 231 0.4185 0.8796 0.5672 0.7208
MD 229 0.5389 0.822 0.651 0.7439
RVO 211 0.3293 0.679 0.4435 0.5601

Normal 222 0.7681 0.94 0.8393 0.9069

overall classification performance metrics with about 7% and
9% improvements in Fβ and Re, respectively. We observe a
categorical increase in Re for all but DR, and the Fβ increment
for UPCs, namely, Glaucoma, ME and RVO to be 7%, 6%,
28%, respectively. Thus, PLL-based identification of under-
fit images aids detection of a minimal training image set for
multi-pathology classification.

C. Qualitative Assessment: Pathology Explainability

Finally, the fine-tuned weights from the InceptionV3 models
are used to visualize the ROIs for test images in Fig. 4. In these
visualizations, deeper yellow color represents concentration
of features or ROIs. Thus, multiple pathology images can be
classified and explained by fine-tuning on individual pathology
images for sensitive categories.

IV. CONCLUSIONS

In this work, we identify an optimal training dataset with
minimal number of images to train a DL model for clas-
sification and explain-ability of retinal images with multi-
ple pathologies. The novel framework includes the use of

Fig. 4. Examples of visualizations for test images with multiple pathologies.

deep representations learned from DL models and the semi-
supervised approach of label propagation to identify cate-
gories of retinal images that need further training. The pro-
posed framework is capable of increasing overall classification
Pr/Re by 2.5%/9% by using about 54% of all training samples
when compared to the complete training data set itself. Visu-
alizations of single and multiple pathologies are shown in Fig.
5. Here, we observe that for single and multiple pathologies,
the ROIs help identify the most prominent pathology first
(opacity in this case) followed by the next prominent ones.
Future works can be directed towards applying correlated label

(a) Image with Opacity only. (b) Image with Opacity and DR.

Fig. 5. Examples of visualized pathologies to gauge detection preferences.

propagation and variants of iterative classification methods [2]
to extend the proposed framework to other medical images.
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