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Abstract— This paper proposes an interactive analysis and
visualization tool for the accuracy improvement of electrode
placement during neurostimulation therapy surgery. During
the procedure, the presented system assists the surgeon in the
crucial tissue type detection by providing a fused visualiza-
tion of the current electrode location and the microelectrode
recordings (MER). The system processes the MER in real-
time and utilizes a convolutional neural network (CNN) to
classify the targeted tissue type. In addition to presenting
the MER in its raw waveform, the system also offers the
visualization of the frequency domain and the result of the
neural network. To further assist the decision-making process,
additional visualization methods are integrated into the system.
Using the pre-operative taken CT and MRI scans, the system
offers 3D visualization in the form of direct volume rendering
(DVR) and axis-aligned slice views in 2D. Both domains are
enriched by the MER readings and the result of the machine
learning classifier.

I. INTRODUCTION

Neurostimulation therapy [5] has been established itself
as a suitable treatment for various movement disorders like
Parkinson’s disease [14], essential tremor [4], dystonia [17],
or Tourette syndrome [12]. One neurostimulation procedure
widely adopted in the clinical field is Deep Brain Stimulation
(DBS) [13], which is used when traditional medications fail
to control the symptoms. Compared to other neurosurgical
procedures, for example, thalamotomy [15], DBS does not
harm nerve cells and instead blocks malfunctioning signals
within the target area.

To achieve the treatment of these movement disorders,
DBS aims to implant an electrode within the patient’s brain.
The implant emits electrical impulses within a target area.
A typical DBS procedure consists of three-phases, the pre-
operative planning phase, the insertion of the electrode, and
the postoperative care. The crucial planning phase is used to
locate the target tissue for the procedure, the subthalamic
nucleus (STN) [16], and determine the electrode’s exact
placement. Preoperatively taken CT [3] and MRI [19] scans
are used to locate the tissue and translate the planned location
into actual angles and penetration depth for the surgery,
harming as little brain tissue as possible.

During the procedure and the insertion of the electrode,
surgeons mentally fuse real-time auditive feedback about
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the currently penetrated brain tissue using micro-electrode-
recording (MER) [2] and know preoperative images to deter-
mine the tissue type around the MER-electrode. This process
is to improve the accuracy of the placement over a procedure
based on the low resolution imaging data alone. In the post-
operative phase, the location of the pulse emission on the
MER-electrode is fine tuned to achieve the best treatment.

II. PROBLEM STATEMENT & CONTRIBUTION

The current state-of-the-art DBS surgery [1] heavily relies
on the surgeon’s capability to build a mental model of the
current electrode position and the classification of different
tissue types based on the auditive and visual feedback
provided by the MER.

While the actual placement technology is highly de-
veloped, supporting real-time imaging and analysis soft-
ware [18] has, to the best of our knowledge, not been
integrated into the procedure. Imaging has to be done in
the pre-processing and planning stage of the surgery and is
usually not present during the actual procedure.

During the procedure, the only visual feedback surgeons
get is the waveform representation of the MER. Based on
the auditive and visual representation of the MER, surgeons
have to decide if the target tissue is reached. Currently,
available classification software that supports the surgeons
in this challenging task is still in its infancy.

The contribution of this paper is a machine learning clas-
sification system for tissue type detection based on the MER
signal. Secondly, we present an integrated and interactive
visualization system that fuses the preoperative imaging data
with the real-time analyzed and classified MER signal.

III. TISSUE TYPE CLASSIFICATION

A. Data Acquisition

During the neurosurgical procedure, surgeons need to
locate and validate the pre-operatively planned target location
for the final placement of the stimulation electrode. By
injecting multiple recording electrodes into the patient’s
brain, surgeons aim to minimize any uncertainty still present
due to possible errors in imaging data. These electrodes are
moved in precise and discrete steps along the preplanned
trajectory towards the target location and consistently sample
the brain activity. Utilizing the MER device, the brain signal
is sampled at a frequency of 20 kHz. The recorded data is
transmitted in real-time to the system for further processing
using a direct ethernet connection between the system and
the recording hardware. For each step and inserted electrode,
between 7 and 15 seconds of brain activity are recorded.
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The recording starts 10 mm in front of the planned target
tissue and ends 5 mm behind the target location, where the
electrode is moved in 1 mm steps between recording steps.

B. Data Processing

The recorded signal of the MER device is the time-
dependent brain activity of the currently penetrated tissue.
To clean up the obsolete data present in the recorded signal,
a low- and high-pass filter is applied, removing frequencies
below 250 Hz and above 1000 Hz. Further data processing is
mandatory to generate the input data for the neural network
and tissue type detection. A Discrete Fourier Transforma-
tion [6] is applied to transform the data into its frequency
domain. For tissue detection, the system uses frequencies
between 250 Hz and 1000 Hz of the recorded 20 kHz signal,
resulting in a frequency band of 750 entries.

C. Classification

To classify the tissue type of the currently recorded brain
activity, the system uses a 1D Convolutional Neural Net-
work [11]. As input for the Neural Network, the transformed
data is used consisting of the 750 frequency entries.

The CNN uses one feature layer with an internal kernel
size of ten values for the subsampling stage and a stride of
five values between each neuron input (see Figure 1). With
the selected kernel size, data stride, and an input vector size
of 750 values, the resulting neural network consists of 150
weights to be trained.

Fig. 1. The used CNN takes as input the frequency domain computed by
the Fourier Transformation. For the input layer, ten frequencies are folded
to a single value. The individual weights for each value are learned based
on the output value and the pre-classified expected result.

For the training purpose, we selected a supervised learning
approach based on the experience of highly skilled neurosur-
geons. The training set consisted of data collected from 21
surgeries pre-classified by experts. Each surgery utilized six
recording electrodes in total with 15 measurement points per

electrode resulting in 1890 pre-determined data samples for
the neural network. For Deep Brain Surgery, the network
was trained to distinguish between the Subthalamic Nucleus
(STN) and other tissues.

IV. VISUALIZATION

The presented system provides various visualization do-
mains to further assist the surgeons in their task of tissue
classification. The gold standard in MER-based DBS surg-
eries is the visualization of the recorded raw signal. The
system can represent the raw data as surgeons already know
them but offers visualization techniques based on the preop-
erative imaging data and the processed and classified brain
recording. The visualization interface is separated into two
domains (Figure 2), the MER-based visualization interface
on the right side and the imaging-based visualization on the
left.

Fig. 2. The user interface of the system is separated into two spaces. The
left part of the interface displays the interactive visualization of the pre-
operative CT and MRI data enriched with the MER results. The right side
represents the processed and analyzed MER data in real-time.

Fig. 3. The MER signal is transformed into its frequency domain.
Frequencies between 250Hz and 1000 Hz are visualized within the software
using the displayed color-coding.

A. MER Visualization

The MER visualization (Figure 2 right) supports the
waveform representation of the recorded data and the color-
coded signal in the frequency domain resulting from the
Discrete Fourier Transformation (Figure 3). The X-Axis of
these images represents the different frequencies considered
for the classification ranging from 250 Hz to 1000 Hz. The
color spectrum goes from blue over green to red, where blue
indicates the lowest amplitudes and red the highest ampli-
tudes. The system processes the incoming data in real-time,
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and the result of the trained CNN is immediately displayed
next to each recording set providing direct feedback to the
neurosurgeon. By displaying all recordings taken during the
session with the addition of the classification simultaneously,
the neurosurgeon gains a quick overview of the complete
implantation at a glance (Figure 5).

Fig. 4. Using the GPU accelerated method based on a gradient descent
approach the system automatically fuses the MRI and CT images in
milliseconds. Top left: starting position; Bottom right: Final registration.

B. Fused Visualization

To improve the decision-making process, the system adds
the pre-operatively taken MRI and CT imaging data as 2D
axis-aligned slice views and 3D volume data.

Fig. 5. Close-up of the MER-Widget: The number of displayed columns
depends on the number of used recording leads. The tool allows switching
between the visualization of the spectrogram and waveform. The automatic
classification is displayed in real-time next to each recording.

The visualization of these two data-set domains has to ful-
fill several constraints to complement intraoperative use. The
CT and MRI scans have to be registered against each other
to locate the correct target tissues. This process can be costly

and often requires manual adjustments by neurosurgeons.
The presented system utilizes a fully automatic registration
technique designed for this use case utilizing modern GPU
features and determines the best suitable position within
milliseconds with a gradient descent approach (Figure 4).

In contrast to the visualization of the 2D axis-aligned
slices, the visualization of 3D volumes can be very compu-
tationally expensive. For intraoperative use, the visualization
has to be interactive and responsive to the user. The system
uses state-of-the-art direct volume rendering with several ac-
celeration techniques [9], [7] to guarantee a fluid interaction
with the data set. By adding multiple clipping techniques
and windowing functions [10], neurosurgeons are already
familiar with the system can be used intuitively during the
procedure.

The neurosurgeons can cross-validate the result of the
automatic tissue type classifier within the 2D and 3D vi-
sualization. The results are rendered as geometric primitives
at the corresponding location of the MER data (Figure 6)
and are color-coded by the average amplitude found.

Fig. 6. The classified MER data is represented in the 3D and 2D
visualization of the system. Surgeons can cross-validate the findings using
the pre-operative imaging data and the intraoperative recordings.

V. RESULTS

Fig. 7. The CNN got trained after every surgery with new data. After
each training session, the best-trained network was used for the upcoming
procedure. After 14 sessions the network reached a consistent classification
of 90%.

The neural network of the system was trained using a
supervised learning approach. We collected data from weekly
procedures and the manual classification of the correspond-
ing neurosurgeon for the training purpose. In total, 1890 pre-
classified recordings were gathered, ranging between 8 and
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13 seconds. To enhance the robustness of the network, next
to the frequency domain computed over the entire recording
additional 5-second windows were randomly selected to
further expand the training set. As result, the complete
training set consisted of 3780 frequency bands.

Successively more samples were added to the training set
until the number above was reached. The weights of the
neuronal network were adjusted after all currently available
samples were evaluated using backpropagation. The final
neural network is the result of multiple generations fine-tuned
over multiple procedures. As displayed in Figure 7 the best
network reached a validation rate of 98.6% for the STN.

VI. CONCLUSION

In this paper, we presented an assistance system for
neurostimulation surgeries. The system presents two different
domains that support surgeons in their complex tasks during
the procedure. The first domain is the analysis and automatic
classification of the MER data. We provide a Convolutional
Neural Network trained to classify the Subthalamic Nucleus
in real-time with very high certainty and present a straight-
forward visualization for intraoperative use.

The second domain of the system is the visualization of
the imaging-based from the preoperative CT and MRI scans.
We integrated this domain to enhance tissue type detection
further and provide an additional feedback channel to the
surgeon. The 2D axis-aligned slice view and the 3D direct
volume rendering of both scans support fast and reliable data-
set registration and visualization for interaction. The result of
the MER analysis supplements the visualization and allows
the surgeon to cross-validate their assessment of the situation.

VII. DISCUSSION

The presented system was constructed and developed in
close relationship with neurosurgeons in clinical practice. It
received very positive feedback for its ease of use and the
additional insight provided by its classification and visual-
ization.

The used neural network was trained to achieve a very
high validation rate at minimal complexity. In its current
state, the network was trained based on pre-classified data
only to detect the STN but can not distinguish other tissue
types. For the future and other procedures, we intend to train
the network for additional tissue types.

For other neurostimulation therapies, where MER is not
used to detect the target area, additional inputs have to
be considered, like motor neuron activity or patient task
performance. These data types can also be used as input
for a neural network and cross-visualized for more certainty
during the procedure.

Currently, the system uses direct volume rendering to
visualize the CT and MRI scans as a cross-validation layer
for the neurosurgeon. In crucial procedures like DBS, fiber
tracks computed from DTI [8] could significantly supplement
the visualization and be straightforward to be added to our
system.
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F. Amtage, J.-M. Régis, T. Witjas, S. Thobois, P. Mertens, M. Kloss,
A. Hartmann, W. Oertel, B. Post, H. Speelman, Y. Agid, C. Schade-
Brittinger, and G. Deuschl. Neurostimulation for parkinson’s disease
with early motor complications. New England Journal of Medicine,
368(7):610–622, 2013. PMID: 23406026.

[15] P. R. Schuurman, D. A. Bosch, P. M. Bossuyt, G. J. Bonsel, E. J.
van Someren, R. M. de Bie, M. P. Merkus, and J. D. Speelman.
A comparison of continuous thalamic stimulation and thalamotomy
for suppression of severe tremor. New England Journal of Medicine,
342(7):461–468, 2000. PMID: 10675426.

[16] F. Steigerwald, L. Müller, S. Johannes, C. Matthies, and J. Volkmann.
Directional deep brain stimulation of the subthalamic nucleus: A pilot
study using a novel neurostimulation device. Movement Disorders,
31(8):1240–1243, 2016.

[17] M. Vidailhet, L. Vercueil, J.-L. Houeto, P. Krystkowiak, A.-L. Benabid,
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