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Abstract— Post-prandial hypoglycemia occurs 2-5 hours
after food intake, in not only insulin-treated patients with
diabetes but also other metabolic disorders. For example,
postprandial hypoglycemia is an increasingly recognized late
metabolic complication of bariatric surgery (also known as
PBH), particularly gastric bypass. Underlying mechanisms
remain incompletely understood to date. Besides excessive
insulin exposure, impaired counter-regulation may be a further
pathophysiological feature. To test this hypothesis, we need
standardized postprandial hypoglycemic clamp procedures in
affected and unaffected individuals allowing to reach identical
predefined postprandial hypoglycemic trajectories. Generally,
in these experiments, clinical investigators manually adjust
glucose infusion rate (GIR) to clamp blood glucose (BG) to a
target hypoglycemic value. Nevertheless, reaching the desired
target by manual adjustment may be challenging and possible
glycemic undershoots when approaching hypoglycemia can be
a safety concern for patients. In this study, we developed a PID
algorithm to assist clinical investigators in adjusting GIR to
reach the predefined trajectory and hypoglycemic target. The
algorithm is developed in a manual mode to permit the clinical
investigator to interfere. We test the controller in silico by
simulating glucose-insulin dynamics in PBH and healthy non-
surgical individuals. Different scenarios are designed to test the
robustness of the algorithm to different sources of variability
and to errors, e.g. outliers in the BG measurements, sampling
delays or missed measurements. The results prove that the
PID algorithm is capable of accurately and safely reaching
the target BG level, on both healthy and PBH subjects, with a
median deviation from reference of 2.8% and 2.4% respectively.

Clinical relevance— This control algorithm enables standard-
ized, accurate and safe postprandial hypoglycemic clamps, as
evidenced in silico in PBH patients and controls.

I. INTRODUCTION

Postprandial hypoglycemia refers to hypoglycemia that
occurs after a meal — usually within 2-5 hours after eating.
While this is a very common form of hypoglycemia in
insulin-treated individuals with diabetes, it can also occur
in other metabolic conditions. A prime example are post-
prandial hypoglycemic episodes that occur in patients who
underwent bariatric surgery, particularly Roux-en-Y gastric
bypass (RYGB). The condition is also known as postbariatric
hypoglycemia (PBH) and is increasingly recognized as a late
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metabolic complication of bariatric surgery, affecting up to
30% of operated individuals [1]. Patients with PBH show a
distinct postprandial glycemic pattern, with a sharp glycemic
rise reaching peak levels after 30 min, followed by a rapid
decline leading to hypoglycemia 90-120 min after eating [2].

The underlying mechanisms are incompletely understood
and most likely multi-factorial [3]. Besides excess insulin
exposure (i.e. as a consequence of enhanced enteroinsulinar
signaling), impaired counter-regulation to hypoglycemia is
increasingly proposed to be involved in PBH physiology.
Testing this hypothesis requires exploration of counter-
regulatory hormones, cardiovascular responses and symptom
perception in affected and unaffected individuals. To assess
the role of counter-regulation independently from other fac-
tors, both cases and controls should follow the same glycemic
trajectory to reach a standardized blood glucose (BG) target.

This can be achieved by using a hypoglycemic clamp ex-
periment, in which continuous intravenous insulin infusions
and variable glucose infusions (GIR) are guided by frequent
BG measurements to track a desired glycemic target [4].
There are two main categories of algorithm-directed glucose
clamp techniques: manual systems require the investigator
to execute the suggested GIR following entry of BG mea-
surements. In fully automated systems, both operations are
managed automatically by closed-loop algorithms, without
the need for user input. Whereas the latter offers the highest
level of convenience, the former allows for dose adjustment
based on clinical reasoning.

Accurately controlling glycemia is as prerequisite for high
quality clamp experiments due to the following reasons.
First, driving glucose levels to the desired target in cases and
control is important for obtaining results of high validity.
Second, activation of counter-regulatory responses requires
BG levels to be at sufficiently low levels (e.g. 2.5 mmol/L),
meaning that possible undershoots of target BG may be
hazardous for patients. Third, this experimental technique
is time-consuming, resource-intensive and burdensome to
participants and must therefore operate smoothly. Thus, the
need for accurate, reproducible and convenient experiments
should prompt clinical researcher to use of automated clamp
techniques. However, automated clamp technique require
dedicated tools and infrastructure, need to be validate and
follow state of the art principles [4].

The aim of this work is to present a proportional-
integrative-derivative (PID) control algorithm for manual hy-
poglycemic clamp experiments to explore counter-regulatory
responses in patients with suspected neuroendocrine dysregu-
lations (e.g. PBH) and control subjects. The algorithm should
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assist clinical investigators in achieving accurate, safe and
convenient control of BG concentrations by suggesting the
correct GIR. The algorithm is tested in silico to assess its
performances in achieving an accurate control of glucose
levels, as well as its robustness to noise, outliers and delayed
or missed BG measurements.

II. METHODS

A. Problem formulation

We will indicate the time grid as t1, t2, . . . , tN , with tk being
the current sampling instant. Ideally, BG measurements and
control actions would be sampled with sampling period (Ts)
of 5 min. Nevertheless, we assume possible sampling jitter
due to non-automatic measurement.

The measured output we aim to control is patient’s blood
glucose (BG) level, y(tk) ∈ R (mmol/l). BG concentration
may be perturbed by oral glucose intake, d(tk)∈R (g), or by
external insulin administration, i(tk) ∈ R (ml/min). Glucose
intake is expected to cause a rise of BG concentration,
eventually followed by an abrupt decrease if the subject
is affected by PBH. Insulin will instead lower glucose
concentration, regardless of the population under exam.

The manipulated variable in this control problem is glu-
cose infusion rate, g(tk) ∈R (ml/min). It is adjusted in order
to guarantee patient’s safety and to adhere to a desired
reference value, r(tk) ∈ R (mmol/l).

B. Controller

For the control algorithm, we chose to adopt a classical
PID formulation. The suggested glucose infusion rate is
therefore computed by the controller as

g(tk) = gP(tk)+gI(tk)+gD(tk), (1)

where
gP(tk) = KP · e(tk), (2)

gI(tk) = gI(tk−1)+KI · e(tk−1)Ts, (3)

gD(tk) =−KD ·
y(tk)− y(tk−1)

tk− tk−1
. (4)

and
e(tk) = r(tk)− y(tk) (5)

is the tracking error.
In other words, gP(tk), corresponds to a control action that

is proportional to e(tk). The action gI(tk) is proportional to
the integral of e until time tk, which is discretized via forward
Euler formulation. This action is initialized at gI(t1) = 0.
The last term in (1), gD(tk), corresponds to an action that
is proportional to the derivative of y at time tk, which is
approximated on the last two measurements of BG. The
parameters KP, KI and KD ∈R+ weight the trade-off between
the different terms of the transfer function. These values were
tuned by trial and error, testing the impact of different pa-
rameters combinations on the final control achieved in virtual
subjects, simulated by means of the simulator described in
section III-A (in silico manual tuning). Their values were set
to KP = 30, KI = 1 and KD = 1.

We aim to reach a hypoglycemic target of 2.5 mmol/l,
which implies that glycemic undershoots may lead to a safety
risk for patients. To decrease the risk of undershoots, we
designed the reference r(tk) to smoothly decrease towards
hypoglycemia as follows:

r(tk) =


3.885 if ∆t ≤ 25
3.885−0.037(∆t−25) if 25≥ ∆t < 55
2.775−0.018(∆t−55) if 55≥ ∆t < 70
2.5 if ∆t ≥ 70

(6)

with ∆t being the difference between the current instant
tk and the instant when the operator activated the control
algorithm, tPID.

A main concern in this control problem is that control
actions are not actuated automatically, but are triggered
whenever clinicians ask the controller for a suggestion.
Although we expect the operator to respect the sampling
period for most of the experiment, some specific foresight
needs to be taken in order to guarantee the robustness of the
controller to missing measurements and non-compliance to
the sampling period. Therefore, specific corrections to the
control actions are imposed downstream of the computation
of the various components of (1) to increase the robustness
and safety of the algorithm.

Two possible kinds of corrections are applied to the
integral action depending on how much time ∆last has passed
since the last measurement. If ∆last ≥ 9 min and ∆last ≤ 20
min, the formula in (3) for the update of the accumulated
error is temporarily replaced with a more accurate estimate
of the integral, i.e. via trapezoidal rule:

gI(tk) = gI(tk−1)+KI ·
1
2
(e(tk)− e(tk−1))(tk− tk−1). (7)

On the other hand, if ∆last ≥ 20 min, then gI(tk) is set to 0
in order to avoid abrupt increases of the integral action.

When ∆last ≤ 2 min, the derivative action gD(tk) is set
to 0 in order to avoid possibly over-aggressive derivative
actions due to measurement errors or outliers. Similarly,
when ∆last ≥ 15 min, gD(tk) is set to 0 in order to avoid
aggressive actions due to large changes in y.

A second aspect to consider in this control problem is
that the manipulated variable g(tk) cannot result in negative
values. In order to avoid possible integrator wind-up, we im-
plemented an anti-windup scheme and any negative value of
gI is set to 0. Furthermore, possible negative GIR suggestion
are saturated to 0.

III. EXPERIMENTAL SET-UP

A. Simulator

The control algorithm has been tested in silico by means of
two large-scale computer models that mimic the metabolisms
of the populations under study. For the healthy subjects of the
control group, i.e. intact gastro-intestinal tract, we used the
healthy subject simulator of glucose-insulin dynamics pre-
sented in Dalla Man et al. [5]. Due to space limitations, we
refer the reader to the original paper [5] for a comprehensive
presentation of the model equation and of its parameters.
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The PBH group was simulated using the same model
structure, but modifying the values of the parameters asso-
ciated to the gastro-intestinal subsystem. PBH subjects are
characterized by increased emptying rate of liquid phase
glucose from gastric pouch into the intestine [2]. In view
of this, the parameter kempt in [5] was increased to better
emulate PHB data previously collected, resulting in a final
increase of 20 times.

Both simulators are equipped with a cohort of 100 dif-
ferent virtual subjects, i.e. 100 different sets of parameters
of the insulin-glucose model, which well represent the inter-
subject variability observed in real patients.

We also designed a model for BG measurement. We
supposed that samples are obtained with YSI analyzer [6],
that is, one of the most widely accepted BG measuring
systems, and applied a white Gaussian noise with standard
deviation 0.1 mmol/l to the measurements y(tk). Despite of
the accuracy of the instrumentation, measurements are also
susceptible to errors due to the sampling process and to the
operator. We assume that any measurement may be affected,
with a probability pout, by a larger error sampled from a
Gaussian distribution with mean -0.5 mmol/l and standard
deviation 0.2 mmol/l.

Since measurements are manually sampled, we also as-
sumed the sampling period will – most likely – slightly vary
between measurements. We simulated this sampling jitter by
applying a delay

delay(t j) =
⌊
n(t j) ·Ts

⌋
(8)

to the j-th measurement, ∀ j ∈ {1, . . . ,N}, with n∈U ([0,1]).
Moreover, one sample may be missed with probability p1 and
two consecutive samples may be missed with probability p2,
as it will be described in Section III-C.

B. Experimental protocol

The aim of the experiment is to drive BG concentration to
a hypoglycemic plateau of 2.5 mmol/l. The plateau should
start at minute 160 and last 20 min.

Experiments last 4 hours. At minute 0, patients will
consume 15 grams of oral glucose. Hypoglycemia will be
induced by means of a primed insulin infusion, starting at
minute 90 of the experiment. The primed insulin infusion
consists of a priming insulin bolus of 0.05 ml/Kg ·BW , where
BW is patient’s body weight (Kg), and a constant insulin
infusion rate of 0.04 ml/m2/min ·BSA, where BSA (m2) is the
patient’s body surface area. Together with insulin infusion,
GIR suggestions will also be activated at tPID = 90.

C. Simulation scenarios and robustness tests

In order to test the robustness of the control algorithm, its
performances are evaluated in three different scenarios with
increasing sources of variability and errors:
• Scenario 1: No measurement errors or sampling jitter.
• Scenario 2: Measurement noise, pout = 1%, no sampling

jitter and no missed samples.
• Scenario 3: Measurement noise, pout = 1%, sampling

jitter and missing samples (p1 = 10% and p2 = 2.5%).

D. Metrics

There are two main categories of metrics that we consider
for this study: those associated to the performances of
the controller and those associated with patients’ safety.
Concerning the first category, we will consider the mean
and standard deviation of glucose levels during the expected
hypoglycaemic plateau (µplateau and σplateau), i.e. between
minute 160 and 180 of the experiment. For what it concerns
subjects’ safety, we will consider the minimal glucose level
and the percentage of time spent in three increasingly dan-
gerous hypoglycemic regions: BG ∈ [1.6-2.2] mmol/l (HR1);
BG ∈ [1.1-1.6] mmol/l (HR2); BG < 1.1 mmol/l (HR3).

IV. RESULTS

Table I reports the results obtained in simulation, stratified
by population (PHH vs control) and scenarios.

Regardless of the scenario, the average glucose level
during the hypoglycemic plateau is in median equal to
2.44 mmol/L with PBH patients and 2.43 mmol/L with
control patients, i.e. 2.4% and 2.8% less than the desired
reference of 2.5 mmol/l, respectively. The range [5th, 95th]
percentile highlights the differences among populations and
scenarios. Generally, the controller achieve a very tight
control for PBH patients, which only slightly worsen with
the increase of variability. The percentile range spans from
[2.39, 2.48] mmol/l in Scenario 1, i.e. [-4.4%, -0.8%] than
the reference, to [2.32, 2.62] mmol/l in Scenario 3, i.e. [-
7.2%, +4.8%] than the reference. Control subjects are instead
less susceptible to these sources of variability and show very
marginal differences among different scenarios. On the other
hand, they show a larger variability between subjects, with
the 95th percentile reaching up to 3.04 mmol/l in Scenario
2, i.e. +21.6% than the desired target but still in severe
hypoglycemia. This may be due to a wider variability of
insulin sensitivity in this virtual population.

Standard deviations of BG at the targeted hypoglycemic
plateu highlight a larger glycemic variability when the
sources of errors and variability increase: in Scenario 1 and
2, PBH patients and controls have a standard deviation of
0.04 mmol/l in median; this value increases in Scenario 3,
up to 0.05 and 0.06 mmol/l, respectively. Noticeably, the
95th percentile increases from 0.04 mmol/l in Scenario 1 to
0.36 mmol/l in Scenario 3 with PBH subjects and from 0.14
mmol/l in Scenario 1 to 0.22 mmol/l in Scenario 3 with
control subjects. The intervals mean ± standard deviation of
BG are reported in Fig. 1, Fig. 2 and Fig. 3.

Similar to the previous metrics, those related to patients’
safety are also affected by the variability of the different
scenarios. The minimal glucose level in PBH subjects is in
median 2.42, 2.41 and 2.35 mmol/l in scenarios 1, 2 and
3 respectively. For the control group, it is 2.4, 2.39 and
2.35 mmol/l. Despite of the increased variability and realism
of the testing scenarios, the control algorithm is capable of
achieving a safe glucose control. In median, the time spent
in HR1 is 0 in every scenario and for both populations. The
95th percentile is 15 minutes in PHH subjects and 7 minutes
in the control group. HR2 and HR3 are never reached.
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TABLE I
RESULTS FOR THE VARIOUS METRICS, STRATIFIED BY POPULATION AND SCENARIO, REPORTED AS MEDIAN [5TH PERCENTILE, 95TH PERCENTILE].

Scenario 1 Scenario 2 Scenario 3
PHH Control PHH Control PHH Control

µplateau (mmol/l) 2.44 [2.39,2.48] 2.43 [2.39,3.03] 2.44 [2.39,2.57] 2.43 [2.38,3.04] 2.44 [2.32,2.62] 2.43 [2.36,3.01]
σplateau (mmol/l) 0.04 [0.03,0.04] 0.04 [0.03,0.14] 0.04 [0.03,0.16] 0.04 [0.03,0.16] 0.05 [0.02,0.36] 0.06 [0.03,0.22]
min glucose level (mmol/l) 2.42 [2.36,2.45] 2.40 [2.35,2.44] 2.41 [1.90,2.44] 2.39 [1.75,2.43] 2.35 [1.80,2.44] 2.35 [1.87,2.43]
time spent in HR1 (min) 0 [0,0] 0 [0,0] 0 [0,5] 0 [0,5] 0 [0,15] 0 [0,7]
time spent in HR2 (min) 0 [0,0] 0 [0,0] 0 [0,0] 0 [0,0] 0 [0,0] 0 [0,0]
time spent in HR3 (min) 0 [0,0] 0 [0,0] 0 [0,0] 0 [0,0] 0 [0,0] 0 [0,0]

Fig. 1. BG and GIR in Scenario 1. Results are reported as mean (thick
line) ± standard deviation over the two populations.

Fig. 2. BG and GIR in Scenario 2. Results are reported as mean (thick
line) ± standard deviation over the two populations.

V. CONCLUSIONS

Exploration of counter-regulation to hypoglycemia is key
in understanding the pathophysiology of hypoglycemic disor-
ders such as PBH. To this end, comparison of the response
to a standardized hypoglycemia in affected and unaffected
individual can provide further insights. However, achieving
an accurate hypoglycemic clamp by manually adjusting GIR
according to clinical judgement is nontrivial, possibly risky
and susceptible to investigator bias.

In this work, we propose a PID control algorithm for

Fig. 3. BG and GIR in Scenario 3. Results are reported as mean (thick
line) ± standard deviation over the two populations.

supporting clinical investigators in the decision of the cor-
rect GIR during hypoglycemic clamps studies. This PID
algorithm has been tested in silico to assess its accuracy
and safety in both PBH and healthy subjects and to test its
robustness to increasingly more realistic scenarios.

The control algorithm achieved consistently positive re-
sults in the two populations despite of the presence of noise,
outliers and sampling jitter, with at worst a median deviation
from the desired target of 2.4% and 2.8% for the PBH and
control group respectively. Furthermore, no safety concerns
were raised during the simulations.
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