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Abstract— Existing literature suggests that the probability
density function (pdf) of surface Electromyography (sEMG)
signals follows either a Gaussian or Laplacian model. In this
paper, a Laplacian-Gaussian mixture model is proposed for the
EMG signals extracted from the upper limbs. The model is
validated using both quantitative and qualitative perspectives.
Specifically, for a benchmark dataset, the Kullback–Leibler
(KL) divergence is computed between the proposed model
and the histogram based empirical probability density function
(mpdf). For a sample signal, a goodness of fit plot with R
squared value and a visual comparison between the histogram
based mpdf and the estimated pdf from the proposed model
are presented. Moreover, the Expectation-Maximization (EM)
algorithm is derived for the estimation of the parameters of
the proposed mixture model. The weight of the Laplacian com-
ponent is computed for each of the signals from a benchmark
dataset. It has been empirically determined that the Laplacian
component has a major contribution to the mixture.

I. INTRODUCTION

The knowledge of the probability density function (pdf)
of the sEMG signal can significantly contribute toward
improving applications of EMG signals for example in
exoskeleton control [1]. The nature of the pdf is affected
by many factors, such as type of the muscle, the level of
muscle contraction force, and the disturbance [2]. The muscle
contraction force has a causal role in the nature of the pdf
of the sEMG signals. In the existing literature, the sEMG
signals are modelled by either the Laplacian or Gaussian
pdfs. Specifically in the earlier work, the Gaussian density
was proposed through experiments on the sEMG signals at
different muscle contraction levels [3], lower and medium
force levels [4], and higher muscle contraction levels [5].
Hunter et al. [6] visually compared the EMG density to a
Gaussian model and observed the deviation from the Gaus-
sian density with a sharper peak at zero. Recently, Bilodeau
et al. [7] reported, under constant force and slowly varying
contractions, the sEMG signal density is non-Gaussian and at
higher force levels, the density of EMG tends to be Gaussian.
Clancy et al. [8], found that at lower muscle force levels the
sEMG tends to follow the Laplacian distribution. Notably, the
sEMG signal from a given channel is traditionally modelled
using a single probability distribution. In many cases, this
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distribution may not accurately describe the nature of the
data. Based on this evidence, it may be reasonable to
assume that the distribution of EMG signals may have both
the Gaussian and Laplacian components. In this work, a
Laplacian-Gaussian mixture (LGM) model is proposed for
the sEMG signals. The proposed LGM model is validated on
an sEMG dataset using (1) the Kullback–Leibler divergence
(KLD) with the empirical probability density function (mpdf)
based on the data histogram (2) qualitative analyses such
as visual comparison with the mpdf and (3) goodness of
fit plot, comparison of coefficient of determination (CFD)
- R-squared, the confidence interval for R-squared and the
Akaike Information Criteria (AIC). Finally, a heat map of the
key model parameter i.e., mixing coefficient corresponding
to the Laplacian component is presented.

II. METHODOLOGY

In this work, a Laplacian-Gaussian Mixture model is
proposed for the sEMG signal from an individual channel.
The key objective is to determine the nature of the mixing
coefficients and thus validate the suitability of the LGM for
the sEMG signals. In this exercise, the proposed model has
a few unknown parameters which have to be estimated to
determine the contributions of the Gaussian and Laplacian
components. The unknown parameters including the mixing
coefficients can be estimated from the corresponding sEMG
data. Here we use the Expectation-Maximization (EM) algo-
rithm [9] for estimation of the unknown parameters.

A. Laplacian-Gaussian Mixture (LGM) Model

Consider a random variable X(n) that denotes the value
of the sEMG signal at the discrete index n. The proposed
LGM model can be written as

f(x; Θ) = λ1f1(x; θ1) + λ2f2(x; θ2) (1)

here x is a realization of the random variable X(n) and
Θ = [λ1, λ2, θ1, θ2] is the vector of unknown parameters
in the mixture model. λ1 and λ2 are the responsibility
coefficients or mixing probabilities that add to unity. θ1 and
θ2 are the parameters of component densities f1(x; θ1), a
Laplacian density and f2(x; θ2) a Gaussian density defined
as follows

f1(x; θ1) =
1

2σ1
exp

(
− |x− µ1|

σ1

)
−∞ < x <∞ (2)

f2(x; θ2) =
1√

2πσ2
2

exp

(
(x− µ2)2

2σ2
2

)
−∞ < x <∞ (3)
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where θ1 = [µ1, σ1] and θ2 = [µ2, σ
2
2 ] are the statistics of

the Laplacian and Gaussian densities. As shown in the LGM
model (1), the mixing coefficients λ1 and λ2 are hidden in
the observations. It is well known that the EM algorithm
provides an efficient solution to the Gaussian mixture case
and with this motivation, we derive a similar EM algorithm
for the proposed LGM model.

B. EM-based Parameter Estimation

Consider a surface EMG signal represented as an array
X = {xn}N−1

n=0 . Inspired by the indicator variable used in the
Gaussian mixture model in [9], we propose a discrete random
vector Z = {Zn}Nn=1 and Zn = [Zn,1, Zn,2] which has
only two possible states {Zn,1 = 1, Zn,2 = 0} & {Zn,1 =
0, Zn,2 = 1}. The relation with the mixing coefficients is
emphasized by the probabilities p(Z1 = 1, Z2 = 0) = λ1

and p(Z1 = 0, Z2 = 1) = λ2. The marginal probability of
these hidden variables is given by

p(Zn) = λ
zn,1

1 λ
zn,2

2 (4)

Note that the variables Zn are assumed to be i.i.d. The
conditional density of xn given Zn and the parameters Θ
is

f(xn|Zn; Θ) =

2∏
j=1

(fj(xn; θj))
zn,j (5)

here, xn are conditionally i.i.d. The joint density of data,
hidden parameters and the parameters is

f(X,Z; Θ) =

N−1∏
n=0

2∏
j=1

(λjfj(xn|θj))zn,j (6)

Thus the complete data log likelihood is

L(X,Z; Θ) =

N−1∑
n=0

2∑
j=1

zn,j ln(λjfj(xn; θj)) (7)

1) E-step: Λ(X,Θ,Θ(k)) is the expectation of the
complete data log-likelihood with respect to the conditional
distribution of hidden variables given data x and current
value of Θ as Θ(k).

Λ(X,Θ,Θ(k)) = EZ|X,Θ(k)

{
L(X,Z; Θ)

}
(8)

Using the Bayes theorem we can obtain the posterior prob-
ability of Zn at index n as

P (Zn,j = 1|xn; Θ(k)) =
f(xn|Zn,j = 1; θ

(k)
j )P (Zn,j = 1)∑2

l=1 f(xn|Zn,l = 1; θ
(k)
l )P (Zn,l = 1)

since the Bayesian estimate of Zn is

E(Zn,j |xn,Θ(k)) = P (Zn,j = 1|xn, θ(k)
j ) (9)

let γ(k)
n,j denote the above estimate and it is obtained as

γ
(k)
n,j =

λjfj(xn; θ
(k)
j )∑2

i=1 λifi(xn; θ
(k)
i )

(10)

To estimate the parameter updates Θ(k+1), the corresponding
expectation on the complete data log likelihood becomes

Λ(X,Θ, γ(k)) =

n∑
i=1

2∑
j=1

γ
(k)
n,j ln(λjfj(xn; θj)) (11)

2) M-step: Substituting the Laplacian and the Gaussian
pdfs from (3) and (2) in (11) leads to

Λ(X,Θ, γk) =

N−1∑
n=0

γ
(k)
n,j

{
lnλ1 − lnσ1 −

|xn − µ1|
σ1

lnλ2 −
1

2
lnσ2

2 −
(xn − µ2)2

2σ2
2

}
(12)

The parameters are estimated recursively by solving the
optimization problem below

Θ(k+1) = max
Θ

Λ(x,Θ, γ(k)) (13)

by replacing the Λ(x,Θ, γ(k)) with the data likelihood in
(12). The updated values of the parameters are

λ
(k+1)
1 =

N1

N

λ
(k+1)
2 =

N2

N

µk+1
1 = Median

[{
γ

(k)
n,1

N1
, xn

}N−1

n=0

]
(σ1)(k+1) =

1

N1

N−1∑
n=0

γ
(k)
n,1

∣∣(xn − (µk
1))
∣∣ (14)

µ
(k+1)
2 =

1

N2

N−1∑
n=0

γ
(k)
n,2xn

(σ2
2)(k+1) =

1

N2

n∑
n=1

γ
(k)
n,2(xn − (µk

2))2

where N1 =
∑N−1

n=0 γ
(k)
n,1 and N1 + N2 = N . The E &

M steps are repeated until convergence of the sum of the
squared error between two consecutive estimates Θ(k) and
Θ(k+1) for each of the parameters.

C. Methods for Validation

The proposed LGM model is validated using the following
quantitative and qualitative analyses.
• KL-divergence between the LGM and the mpdf: By

definition, the KLD measures the similarity between
two probability distributions. Let f1 and f2 be the
probability distributions then their KL-divergence is
given by

KL(f1, f2) =
∑
x

f1(x) ln

(
f1(x)

f2(x)

)
(15)

• Visual comparison: The visual comparison between the
mpdf and the estimated pdf helps to understand the
agreement between them. Specifically, the mpdf is fitted
from the histogram and the proposed model pdf is
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Fig. 1: KL-divergence for each of the subjects and activities (a) LGM, (b) Laplacian and (c) Gaussian models
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Fig. 2: Average KL-divergence (a) over the subjects for different activities (b) over the activities for different subjects

reconstructed from the estimates of model parameters
from the EMG signal.

• A goodness of fit plot with R-squared: A goodness of fit
plot is used to show the relationship between the actual
EMG values and the model-based values. The closer
the data points to the 45◦ line, the better the model fit.
Whereas, coefficient of determination (R-squared) gives
the variation of one variable that is directly related to
the change of the other variable. If this value approaches
1, then the correlation between the two variables is
stronger.

• Akaike Information Criteria (AIC): The AIC [10] is a
statistical metric used to select the best model among
available models. It is calculated using

AIC = n log

(
SSE

n

)
+ 2p (16)

where n is the number of observations, SSE is the sum
square of errors and p is the number of parameters. A
model with a lower AIC value is preferred.

III. VALIDATION AND RESULTS

A. Data description

In this work, the proposed model is tested on the EMG
Ninapro dataset DB2 [11] which consists of 3 different
exercises collected from 40 subjects. Out of these 3 exercises,
we consider exercise-1 which consists of 17 basic activities
of the wrist and the fingers. Each of these EMG signals
are collected from twelve electrodes (channels) placed at
strategic muscles sites on the arm. For a given trial, the
EMG signal usually corresponds to 5 sec of recording. In
this study, the proposed model is constructed and analyzed
for a channel with the maximum energy among the available
channels for a given trial. The average value of this maximum
energy among the selected channels over the 40 subjects and
17 activities is 3.74×10−4. The proposed model parameters
are estimated by EM algorithm described in section II-B.
However, only the estimates of the mixing coefficients are
discussed here.

B. Model Validation

1) KL-divergence: The KLD is computed between the
proposed model pdf and the mpdf for the data corresponding
to the 40 subjects performing 17 different limb activities (Fig
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Fig. 3: Comparison of the mpdf with models LGM (blue),
Laplacian (green) and Gaussian (red) for subject-15 and
activity-17

1(a)). For comparison purposes, we also present similar KLD
maps for the Laplacian (Fig 1(b)) and the Gaussian models
(Fig 1(c)). As shown in Figs. 1(a) to (c) the KL-divergence
for the LGM model is apparently the lowest, followed by the
Laplacian and the Gaussian. Specifically, KLD for the LGM
model, the upper bound is 0.1 and it is the lower bound
for the KLD from the Laplacian and Gaussian models. To
emphasize this trend, the KLD averaged over the subjects
for each of the activities is shown in Fig 2(a) and KLD
averaged over the activities for each of the subjects is shown
in Fig 2(b). Clearly, the average KLD for the LGM model
is very low compared to the average KLD computed for the
Laplacian and the Gaussian models.

In the following analyses, i.e. visual comparisons, Good-
ness of fit plots and the AIC, the results are presented only for
the EMG signals from the data corresponding to the subject
15 and activity 17.

2) Visual Comparisons: The visual comparison as de-
scribed in section II-C is given in the Fig. 3. It is evident
that the area covered by the LGM pdf with empirical data is
better when compared to the Laplacian or Gaussian pdfs. For
this EMG signal, the LGM pdf is a better match compared
to the standalone Gaussian or Laplacian pdfs.

3) Goodness of fit plots: Fig. 4 depicts the goodness of
fit plots between different models and the actual data. It is
clear that for the proposed LGM model, the data points in the
scatter plot are distributed along the 45◦ line indicating better
correlation. In contrast, the data points which are away from
this line correspond to the Laplacian and Gaussian models
(Fig. 4). Similarly from the values of R-squared, it is ob-
served that the proposed model is better than the competing
standalone models. The confidence interval for R-squared
for subject-15 and activity-17 is [0.9945, 0.9969] for LGM,
[0.816389, 0.829337] for Laplacian and [0.8617, 0.8733] for
Gaussian. For the EMG signal under consideration, the AIC
values for the 3 models are LGM: 1.3905, Laplacian: 1.5634
and Gaussian: 1.5187.

Similar qualitative comparative analyses are carried out
for the rest of the data from the 40 subjects and 17
activities and the LGM has been apparently a good fit
compared to the other pdfs. These results can be found
at https://bit.ly/3ecyH2O. The average R-squared values for
the three models over the 17 activities of 40 subjects are
as follows, LGM: 0.9476, Laplacian: 0.9303 and Gaussian:
0.5199. The confidence intervals and the AIC values for rest
of the data can be found in the same link. Clearly, the LGM
model is suitable for the sEMG signals from the Ninapro-
DB2.
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Fig. 4: Goodness of fit plots for LGM model (blue), Lapla-
cian model (green) and Gaussian model (red) for subject-15
and activity-17
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Fig. 5: Heat Map of weight coefficients of Laplacian com-
ponent in LGM model for 40 subjects and 17 activities

4) Analysis of weight map: Based on the analysis of
the DB2 data using the proposed LGM model, the mixing
coefficient corresponding to the Laplacian component λ1 is
shown through a heat map in the Fig. 5. It is observed
that in most of the cases i.e for different subjects and
different limb activities, λ1 has a higher value compared
to λ2 of the Gaussian component. As evident in Fig. 5,
a few exceptions do exist to this observation, for e.g. the
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weights λ1 corresponding to a few activities of subjects
7, 8, 12, 22, 25, 28, 29 and 36 are found to be lower. This
means λ2 is larger i.e., Gaussian component has a higher
contribution for the mentioned subjects. Moreover, for most
of the signals, as shown in Fig. 5, the weight λ1 is between
0 and 1 which implies a positive contribution from both the
distributions.

IV. CONCLUSION

A Laplacian-Gaussian mixture model is proposed for the
surface EMG signals. The model is tested on the sEMG
signals of the benchmark Ninapro DB2 dataset. From the
KL-divergence, the R-squared, confidence intervals for R-
squared, the AIC and the visual comparisons with the mpdf,
it is validated that the proposed model is better compared
to the standalone Laplacian and Gaussian models. Also for
most of the signals, both the mixture components contribute,
however, the Laplacian component has a stronger weighting.
In future work, we plan to extend our proposed model for
the multi-channel EMG signals and demonstrate its practical
applicability.
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