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Abstract— The automated recognition of human emotions
plays an important role in developing machines with emotional
intelligence. However, most of the affective computing models
are based on images, audio, videos and brain signals. There is
a lack of prior studies that focus on utilizing only peripheral
physiological signals for emotion recognition, which can ideally
be implemented in daily life settings using wearables, e.g.,
smartwatches. Here, an emotion classification method using
peripheral physiological signals, obtained by wearable devices
that enable continuous monitoring of emotional states, is
presented. A Long Short-Term Memory neural network-based
classification model is proposed to accurately predict emotions
in real-time into binary levels and quadrants of the arousal-
valence space. The peripheral sensored data used here were
collected from 20 participants, who engaged in a naturalistic
debate. Different annotation schemes were adopted and their
impact on the classification performance was explored. Evalu-
ation results demonstrate the capability of our method with a
measured accuracy of >93% and >89% for binary levels and
quad classes, respectively. This paves the way for enhancing
the role of wearable devices in emotional state recognition in
everyday life.

I. INTRODUCTION

Emotion classification and recognition using wearable
sensors have been an emerging research topic in recent
years, as emotions are fundamental in humans’ daily life,
and accurately detecting emotional states can revolutionize
healthcare and human-machine interaction (HMI) fields. Rec-
ognizing emotions can be approached using signals of ex-
ternal manifestations, such as speech and facial expressions.
However, these signals may not reflect the actual emotions as
people can conceal or suppress them. Alternatively, emotions
can be recognized through physiological signals, such as
electrocardiogram (ECG) and electroencephalograph (EEG)
that are unconsciously generated by the autonomic nervous
system for regulating bodily functions [1].

Advancements in mobile computing and wearable tech-
nologies have enabled the continuous monitoring of the
physiological signals, allowing the transformation of the
traditional healthcare system by shifting from treatment to
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prevention [2]. Sensors of wearable devices can provide
data of physiological signals, such as heart rate (HR), blood
volume pressure (BVP), electrodermal activity (EDA), and
temperature (T), which can reflect emotional changes. E-
health applications and self-monitoring devices with reliable
personalization allow the enhancement of preventive health-
care, while cloud computing can solve the issue of scalability
and availability of data [3].

Developing a reliable automated system that understands
emotions is challenging, since emotions are elicited in
diverse contexts, and the characteristics of physiological
signals are complex [4]. Additionally, laboratory settings
are mostly used. Thus, a robust emotion recognition system
implemented in naturalistic settings and scenarios with wear-
able noninvasive sensors, enables an array of novel applica-
tions in daily real-life scenarios. For example, data provided
from such a monitoring system can help understanding the
etiology of mental health problems, such as stress, and enable
studies to improve the diagnosis and treatments of mood
disorders, such as depression and post-traumatic stress dis-
order (PTSD) [5]. Further, HMIs may support more nuanced
communications with the users, by leveraging computers’
ability to differentiate human emotional states and to react
accordingly, thus enhancing user experiences.

Classification can be done based on discrete emotions,
such as the discrete basic emotions of the Ekman model (fear,
anger, happiness, sadness, surprise, contempt, disgust) [6]. It
can also be done based on a dimensional model, such as
arousal, valence, dominance, and liking, whose advantage is
that no prior hypothesis of emotion categorization is required
[5]. Additionally, recognition of emotions is most commonly
investigated using brain signals [7], mainly EEG, either using
a single-modal scheme [1], [8], or a multi-modal method
with other physiological signals [5], [9]. Nevertheless, for
daily life self-monitoring and HMI applications, peripheral
signals provided by noninvasive wearable devices are more
suitable to use. Therefore, works were conducted to classify
emotions using a single peripheral signals [10], [11], as well
as multi-modal peripheral data [12], [13].

In this work, a framework is introduced for emotion
classification in the arousal and valence space, using multi-
modal peripheral physiological signals collected in a natu-
ralistic scenario. This study is based on physiological data,
including HR, EDA, and T, obtained using wearable devices,
during an impromptu debate between pairs, where partic-
ipants’ emotions were rated frequently. A neural network
classification model based on a single Long Short-Term
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Fig. 1. A diagram of the self and partner annotation scheme during a
conversation between two participants

Memory (LSTM) layer is proposed for accurate and real-
time prediction of the emotions into two levels of arousal and
valence, in addition to their quadrant combinations. The use
of annotations provided by different rating perspectives (e.g.,
self vs. partner vs. others) is investigated, and their effects on
the classification performance as whole and per participant,
as well as the distribution of the results are demonstrated.

II. METHODOLOGY

A. Dataset

The focus of this framework is to use the physiological
signals that are collected from human peripheral parts using
wearable devices. Thus, data collected from 20 participants
{P1, P5, P8, P9, P10, P11, P13, P14, P15, P16, P19,
P22, P23, P24, P25, P26, P27, P28, P31, P32} in the
K-EmoCon [14] dataset are used in this work. K-EmoCon
is a publicly available dataset with multi-modal affective
information, including physiological signals, as well as audio
and video recordings collected from participants engaging in
naturalistic conversations, in the form of 10-minute debates
between pairs on the Jeju Yemeni refugee issues. Since the
focus in this framework is on signals that are collected
from human peripheral parts using wearable devices, the
physiological signals used are HR, EDA, and T signals,
which were collected using Empatica E4 Wristband (for HR,
EDA, and T) and Polar H7 Sensor (for HR signal measured
from ECG signal). As a result, the chosen 20 participants,
whose data are used in this work, have these signals available
in the dataset with minimal distortions. The HR signals have
a sampling rate of 1 Hz, while the EDA and T signals have a
sampling rate of 4 Hz. EDA signal values can range between
0.01µS and 100µS, whereas T signal values can range
from −40◦C to 115◦C.Having similar sampling rates makes
them suitable to be integrated in a multi-modal classification
model. Furthermore, low sampling rates (1 to 4 Hz) help
to implement a fast model for naturalistic scenarios where
continuous monitoring is required.

B. Emotions Categorization

Emotions of the participants were annotated during the
debate period every 5 seconds from different perspectives.
Here, self (the participants rating themselves) and part-
ner (the debate partners rating each other) annotations are
adopted, as well as combined annotation combining both

Fig. 2. Illustration of the proposed emotion classification model

ratings. Fig. 1 illustrates the annotation scheme. The emo-
tions were annotated based on arousal and valence affective
dimensional emotional model as in Russell’s circumplex
model of affect [15], and they were measured with a Likert
scale from 1 to 5. Accordingly, the emotions are classified
by the model based on the level of arousal and valence
into high (H) and low (L). Moreover, the emotions are
categorized into one of quad classes combining the arousal
and valence levels, which are and high arousal high valence
(HAHV), high arousal low valence (HALV), low arousal
high valence (LAHV), low arousal low valence (LALV).
Therefore, the self and partner annotations in Likert scale
ratings are converted into H and L according to a mid-value
of 2.5 (L: 1-2, H: 3-5). For the combined annotations, the
self and partner ratings are accumulated and re-scaled into 1
to 9, then converted into H and L based on a mid-value of
4.5 (L: 1-4, H: 5-9).

C. Classification Model

To classify the emotions based on the peripheral bio-
signals according to the classes aforementioned, an LSTM-
based classification model is used. It is essential to have a fast
and robust model suitable for real-life frequent continuous
monitoring (5 seconds intervals in the K-Emocon dataset)
of emotions using low frequency signals. Fig. 2 displays a
block diagram that illustrates the proposed emotion classifi-
cation model. First, the raw signals of each participant are
normalized separately. The normalization is performed based
on the collected signals during a relaxation period prior to the
debate, where here the last 1.5 minutes were used. This was
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TABLE I
EMOTION CLASSIFICATION ACCURACY (%) RESULTS OF THE PROPOSED MODEL AGAINST BASELINE TECHNIQUES USING DIFFERENT ANNOTATIONS

Arousal Valence Quad Classes
GNB XGBoost Proposed GNB XGBoost Proposed GNB XGBoost Proposed

Self 62.55 79.16 90.22 74.86 84.82 92.39 45.93 68.49 86.18
Partner 67.76 81.26 93.17 74.12 84.17 90.68 49.17 72.88 89.13

Combined 65.87 77.56 88.98 67.88 79.12 88.51 44.09 66.28 83.23
Average 65.39 79.33 90.79 72.29 82.70 90.53 46.40 69.22 86.18

Self Partner Combined

Fig. 3. Confusion matrices of emotion classification results for quad classes with different annotations

employed to remove personal bias based on the signals of
the participants’ natural state, which may vary due to several
factors, such as age, gender, and physiological nature.

The lower frequency bio-signals (1-Hz HR signals) are
then interpolated based on the highest sampling frequency
used, based on the nearest-neighbor method. Then the signals
are divided into segments of size w × Fsm, where Fsm
is the highest sampling frequency of the used signals (4
Hz here), and w is the annotation/classification interval (5
seconds here). This setting can be altered based on the dataset
and the annotation periods of the raters.

For this model, an LSTM network is used for training and
classifications. As it was proven in the literature, methods
using LSTM networks were able to achieve good and robust
performances when used in classification tasks of sequences
from physiological signals [4], [9]. The proposed classifica-
tion model includes a neural network with one bidirectional
LSTM layer. Since the network is relatively shallow, training
and testing can be performed considerably fast, while being
able to achieve good performance. The neural network part
of the model consists of a sequence input layer with a size
equal to the number of signal types used (4 in this case), as
well as a bidirectional LSTM layer with 100 hidden units
where the return state is used, a fully connected layer, and
a softmax layer for classification. The output corresponds to
the level of arousal or valence. The output has two classes
when trained and used for binary arousal and valence level,
or four classes in case of their combination.

D. Implementation
The proposed classification model was implemented in

Matlab 2020a. The options used for training are as follows.
A minimum sequence length of 20, which is equal to the
input sequences length (w×Fsm), to minimize the amount of
padding in the mini batches. The model was trained for each
experiment with a number of epochs of 500, with no shuffling
of data. On a machine with 16 MB of RAM and Nvidia 980m
GPU, the classification speed was 67.5 µs/prediction, which
is much faster than needed for an interval of w = 5s, making
it very suitable for real-time implementation.

III. RESULTS & DISCUSSION

The presented results of the proposed model were ob-
tained with 4-fold cross-validation scheme, while training
and testing using different annotation perspectives. Table I
tabulates the emotion classification accuracy of the proposed
method, in comparison to baseline techniques. The base-
lines are Gaussian Naive Bayes (GNB) [7], a probabilistic
classifier, and XGBoost [16], an efficient high-performance
tree boosting system, both trained with 30 features from the
used peripheral signals following Soleymani et al.’s TEAP
toolbox [17]. The K-EmoCon dataset implementation can be
found in this site [18].

The results show the superiority of the proposed model
with average classification accuracy of 90.79% for arousal,
90.53% for valence, and 86.18% for quad classes. In arousal
classification tests, all the methods performed the highest
when using the partner annotations (93.17% for the pro-
posed), which is the same case as in quad classes clas-
sification (89.24% for the proposed). On the other hand,
in valence classification experiments, the best performances
were obtained using the self annotations (92.39% for the
proposed). The accuracies obtained when using the combined
annotations were the lowest, which may be due to the change
in the data balance.

Confusion matrices of the quad classes classification re-
sults are displayed in Fig. 3. This shows the performance
of the proposed model per each class. Additionally, the
difference between the annotations in the distribution of the
data across classes can be observed. In all cases, the data are
mainly biased towards HAHV, which is the normal human
state, where no negative emotion is present, and least biased
towards LALV, where the emotion state is negative overall.
It can be observed that the combination of the annotations
leads to a more balanced distribution across the classes.

Fig. 4 shows heat-maps of inter-rater reliability between
the predictions from the classifier, and the annotations used
for training and testing, based on the Krippendorff’s alpha.
Following the experiments performed in Table I, the values
are calculated for each of the 20 participants. The alpha value
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Fig. 4. Heat-maps of inter-rater reliability of model predictions against the used annotations for each participant’s measured with Krippendorff’s alpha

for some participants within the same test is low in com-
parison to the others (P8|P27 in arousal and P16|P25 in
valence with self, P8|P14|P25 in arousal and P15|P22|P26
in valence with partner), which indicates that the emotion
labeling or/and the participant emotion state is inconsistent
with the other participants. Additionally, the alpha value
varies dramatically across annotation types (P14|P25|P27
in arousal, P11|P15|P16|P26| in valence), indicating that
one labeling perspective can be more accurately representa-
tive of the emotional state that the other. Another interesting
observation is that the reliability for all participants in the
cases of self and combined annotations, have more consistent
alpha values compared to the partner case. In other words, the
standard deviation across the participants is lower (0.3011,
0.3331 and 0.3013 in arousal and valence for self, partner
and combined respectively).

IV. CONCLUSIONS

This work presented a framework for emotion classifica-
tion in the arousal and valance space, from peripheral physio-
logical signals, using an LSTM neural network-based model.
The emotions were categorized into two levels of arousal and
balance and their quadrant classes. The peripheral signals
used were collected during naturalistic conversations with
various annotation schemes. The experimental results have
shown increased performance (for arousal 93.17% and quad
classes 89.13%-partner annotations; for valence classifica-
tion 92.39%-self annotations). Classification using combined
annotations resulted in more balanced results. The future
work includes implementation of continuous emotional state
analysis in daily-life settings, with the development of a
cloud powered mobile application for personalized physical
and mental health monitoring.
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