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Abstract— Deep brain stimulation is an effective 

neurosurgical intervention for movement disorders such as 

Parkinson’s disease. Despite its success, the underlying 

mechanisms are still debated. One tool to better understand 

them is the Volume of Tissue Activated (VTA), that estimates the 

region activated by electrical stimulation. Different estimation 

approaches exist, these typically assume isotropic tissue 

properties and modelling of anisotropy is often lacking. 

The present work was aimed at developing and testing a 

method for patient-specific VTA estimation that incorporated an 

anisotropic conduction model. Our method was implemented 

within the open-source toolbox Lead-DBS and is accessible to the 

public. 

The present method was further tested with two patient cases 

and compared to a standard Lead-DBS pipeline for VTA 

estimation. This showed encouraging similarities in one test 

scenario and expected differences in another test scenario. 

Further validation with a wider cohort is warranted. 

I. INTRODUCTION 

Deep Brain Stimulation (DBS) is a state-of-the-art 
neurosurgical intervention. It has shown to be an effective tool 
in treating a variety of diseases. An extensive review of its 
success for movement disorders can be found in [1]. 

To better understand the effects of DBS, the Volume of 
Tissue Activated (VTA) has been a very helpful model. For 
instance, in [2] a patient-specific computational model of DBS 
to estimate VTAs is reported. The model incorporated 
diffusion-weighted images but required considerable expertise 
to be implemented [3]. In contrast, the estimation of VTAs has 
recently become more accessible to a wider research 
community through the Lead-DBS toolbox requiring 
markedly less computational expertise and resources [4]. 

This toolbox mainly estimates the VTA by computing and 
thresholding the electric field generated by the stimulation. 
The electric field depends on the conductivity of the tissue. 
The default estimation in Lead-DBS can account for the 
conductivity of white and grey matter and is assumed to be 
isotropic, i.e., identical in all spatial directions. This 
assumption and the resulting VTAs have served to better 
understand DBS, when targeting grey matter nuclei such as the 
subthalamic nucleus for movement disorders [5]. However, 
some more recent DBS indications have been explicitly 
targeting white matter tracts such as the dentato-rubro-
thalamic tract for essential tremor [6], [7] or the medial 
forebrain bundle for depression [8]. Such white matter tracts 
typically exhibit highly anisotropic conductivity [9], i.e., 
different values in different spatial directions. Therefore, a 
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patient-specific and anisotropic conduction model may 
improve the VTA estimation and may eventually help improve 
DBS programming and patient outcome for these indications. 

The present work aimed to develop a VTA estimation 
method (referred to herein as Anisotropic method) with the 
following features: 

• patient-specific and anisotropic conduction model;  

• implemented in Lead-DBS to be available to a wider 
research community. 

II. METHODS 

This work is organized in three steps. First, we describe the 
preprocessing of the patients’ structural and diffusion images 
as well as the anisotropic conduction model. This is necessary 
to extract the anisotropic properties of the brain tissue. Second, 
we introduce the core elements of the Anisotropic method, i.e., 
we describe the conduction model, the electric field 
computation and the thresholding for VTA estimation. Finally, 
we specify two test scenarios that compares the Anisotropic 
method with a standard Lead-DBS estimate of VTA. 

A. Preprocessing 

We extracted anisotropic electrical properties from 
diffusion images. Images from two patients, previously 
published in other cohorts [5], [6], were used to develop and 
test the Anisotropic method. Besides standard structural T1 
and T2-weighted sequences, diffusion images were recorded. 
For patient A these were characterized by 62 gradient 
directions, b-value 1000 s/mm2, slice thickness 4 mm and slice 
resolution 1 mm; for patient B 64 gradient directions, b-value 
1000 s/mm2, slice thickness 2 mm and slice resolution 1 mm. 
After acquisition of the 4D diffusion images, the MRtrix [10] 
and FSL [11] software was included in the preprocessing 
pipeline: 

1. Denoise and unring using MRtrix [12]; 

2. Perform eddy correction using topup [13], [14] and 
eddy [15] with FSL. In case the reverse mode acquisition was 
not available, topup was substituted by Synb0-DisCo [16] (this 
was the case for both patients A and B); 

3. Extract brain from the structural images and the 
average null-gradient volume in the diffusion-image with FSL 
bet [17]; 

4. Compute the coregistration transform from null-
gradient diffusion image to structural image. FSL flirt [18], 
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[19] with 6 degrees of freedom was used for initialization, and 
refinement was carried out by a second run of flirt using 
boundary-based registration algorithm (using white matter 
segmentation [20]); 

5. Apply transform to all the diffusion-image data; 

6. Compute voxel-wise diffusion tensor using fanDTasia 
library for Matlab [21]. 

The patients’ lead reconstruction was obtained using the 
standard pipeline implemented in Lead-DBS [4]. 

B. Conduction Model 

The conduction model was built upon a tetrahedral mesh 
designed with the iso2mesh library [22]. From the 
reconstruction of the leads inside the brain volume, the mesh 
was computed in native patient space. An initial mesh, which 
had nodes uniformly distributed over a cylinder with radius 
20 mm and height 35 mm centered on the lead, was merged 
with the nodes of the lead model. 

Then each node was assigned its corresponding 
conductivity tensor. During preprocessing, diffusion-image 
data was registered to native space. The correspondence 
between the nodes of the mesh and the relative diffusivity 
tensor was found using a Nearest Neighbour algorithm. A 
linear relationship was then used to derive the conductivity 
tensor from the diffusivity tensor for each voxel. This 
relationship assumed myelinated axons with an average 
diameter of 5.7 μm [23]. For the conductivity tensor a 
geometrical anisotropy model with 6 degrees of freedom and 
3x3 positive-definite tensor was adopted [24]. 

To complete the model, the conductivity tensor was 
overwritten for nodes that represented the lead and scar tissue. 

C. Electric Field Computation and Thresholding for VTA 

The model described so far was employed in the 
computation of the electric field. In fact, with the assumption 
of large fibres and a specific pulse-width, neural activation can 
be inferred from thresholding the electric field [25], i.e. the 
gradient of the electric potential. This threshold depends on the 
characteristics of the fibres and can be extracted from 
precomputed tables [26]. The threshold does not depend on the 
stimulation amplitude. 

This approach is also used in a standard Lead-DBS method 
to estimate VTAs: SimBio/Fieldtrip [27]. Elements having an 
electric field gradient larger than or equal to 0.2 V/m (the 
default value, which can be adapted indeed) are assigned to the 
VTA (Fig. 1). Our anisotropic method used the same threshold 
for comparison. 

D. Testing  

Two tests were carried out inspecting: (i) the correct 
functioning of the overall method (Test 1, ‘unit testing’); and 
(ii) the impact of anisotropy (Test 2).  

In both tests, comparisons were run against the 
SimBio/FieldTrip method in Lead-DBS. In Test 1 the 
Anisotropic method was fed with a synthetic input that 
mimicked SimBio/FieldTrip conditions as much as possible 
(isotropic, tissue-dependent conductivity), though there was a 
difference in mesh density for the two methods. Specifically, 
the anisotropic conduction model had a mesh density of 

around 1.7 nodes/mm3 in the cylinder, while in the lead it was 
2587 nodes/mm3. The SimBio/Fieldtrip mesh had the same 
density for the lead, but a value of 287.4 nodes/mm3 for grey 
matter regions derived from the DISTAL atlas [28] and 
0.3  nodes/mm3 in the rest of the cylinder. In summary, Test 1 
may be regarded as a unit test. In Test 2 in contrast, the 
patients’ diffusion images were integrated (while scar tissue 
was neglected).  

In both tests, we performed simulations in voltage-
controlled and current-controlled modes at 1, 3, 5 V and 1, 3, 
5 mA, respectively. We repeated these conditions for ring and 
for directional stimulation and in both hemispheres, totaling 2 
modes x 3 amplitudes x 2 direction-modes (ring/directional) x 
2 hemispheres x 2 patients = 48 simulations for both Test 1 
and Test 2. The degree of similarity was assessed by the DICE 
coefficient. 

Figure 1. DBS simulation in native space. The model of the leads is 

represented along with the VTA computed by the Anisotropic method (light 

red). All the other structures are extracted from the DISTAL minimal atlas. 
In particular, the blue volume represents the external Globus Pallidus, the 

green one is the internal Globus Pallidus, the orange one is the subthalamic 

nucleus and the dark red one is the red nucleus. 

Figure 2. DICE coefficient comparing the VTAs obtained by 
SimBio/FieldTrip method against the present Anisotropic method in the 

conditions of Test 1 and Test 2 for the two patients. Mean value is denoted 

by the red circle, while median is represented by the red square. 
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E. Implementation and Data availability  

The present method with further documentation is publicly 
available on GitHub, implemented within Lead-DBS v2.3.2 
(https://github.com/CaprioloSaggio/leaddbs).  

The anonymized patient images can be requested from the 
corresponding author. 

A graphical user interface allows adjusting the algorithm’s 
parameters. The present method can be chosen by selecting the 
Anisotropic option from the Model drop-down menu present 
in Lead-DBS Stimulation GUI. Typical run times on a PC with 
3.4 GHz Intel Core i5 processor and 16 GB RAM were about 
360 s on the first run and about 30 s at successive runs, when 
the computed conduction model was reused.  

III. RESULTS 

Since this was a preliminary study with a focus on the 
development of the anisotropic method, we report the results 
on the two tests.  

Fig. 2 shows that the unit test Test 1 yielded median DICE 
coefficients of 0.79 and 0.87 for patients A and B, respectively.  

Test 2 integrated the patients’ diffusion images and 
resulted in DICE coefficients of 0.42 and 0.56 for patient A 
and B, respectively.  

We chose not to report statistical tests, as there is no 
commonly-accepted similarity threshold for DICE 
coefficients. Therefore we had reservations about testing these 
values against arbitrarily set thresholds. 

In terms of volume, Fig. 3 shows a reduction in median 
VTA volume obtained with the Anisotropic method (with and 

without scar tissue) compared to the outcome of 
SimBio/FieldTrip. 

IV. DISCUSSION 

The described anisotropic method underwent preliminary 
testing. Systematic studies are warranted using a larger cohort 
to robustly compare the Anisotropic method against 
alternative algorithms. Furthermore, a thorough analysis 
regarding the impact of image quality on the outcome of the 
method would be beneficial.  

Test 1 yielded median DICE coefficients of 0.79 and 0.87 
for patients A and B, respectively. This test was designed as a 
unit test of the anisotropic method and high similarity was 
expected (Fig. 2). These values are encouraging, while the use 
of different algorithms and conduction models are likely to 
account for the difference of about 0.2 (a DICE coefficient of 
1 means perfect match).  

Test 2 yielded a lower median DICE coefficients of 0.42 
and 0.56 for patients A and B, respectively (Fig. 2). This 
represented a marked difference in VTAs due to anisotropy. 
We noticed a bimodal distribution of DICE coefficients, that 
was likely associated with stimulation modality. However, our 
test data set of two patients was too small to draw robust 
conclusions and further research is necessary. 

A qualitative assessment of the estimated VTA volumes 
(Fig. 3) suggested a reduction in median volume with the 
Anisotropic method. This trend was consistent with findings 
reported in [2]. Fig. 4 illustrates this qualitative similarity 
between results from literature and those obtained in the 
present study. This reduction in median volume warrants 
further investigation and should be paired with clinical 
outcomes to better understand DBS mechanisms where white 

Figure 3. Distribution of the VTA volumes from the three estimation methods 

used for Patient A (top) and Patient B (bottom). We considered both the 

Anisotropic method with and without scar tissue modelling. Mean value is 

denoted by the red circle, while median is represented by the red square. 

Figure 4. The upper plot shows the growth in volume of the estimated 

VTAs for different voltages, the lower one for different current amplitudes. 

The smaller VTA volumes with Anisotropic method were in agreement 

with a previous report [2]. 
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matter tracts are targeted. In contrast to anisotropy, the 
presence of scar tissue in the anisotropic model has a lower 
impact on the result.  

A. Limitations 

The anisotropic method required additional cost in terms 

of imaging data and computation with respect to similar VTA 

estimation methods. Furthermore, the scaling factor that 

mapped from diffusivity to conductivity was considered as a 

fixed value, independent of the fibre diameter. Thus, the 

assumption about fibre diameter was a critical choice. The 

scale factor from diffusivity to conductivity measures was set 

based on [23], which considers large size axons and this may 

have led to an overestimation of the conductivity values. 

V. CONCLUSION 

The main contribution of this work was the development of 

a patient-specific anisotropic VTA estimation method. It has 

been implemented in Lead-DBS and is publicly available. The 

method requires further testing with a larger cohort. This 

could be beneficial for DBS indications targeting white matter 

tracts.  
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