
  

  

Abstract— Long non-coding RNAs have generated much 
scientific interest because of their functional significance in 
regulating various biological processes and also their 
dysfunction has been implicated in disease progression. 
LncRNAs usually bind with proteins to perform their function. 
The experimental approaches for identifying these interactions 
are time taking and expensive. Lately, numerous method on 
predicting lncRNA-protein interactions have been reported yet, 
they all have some prevalent drawbacks that limit their 
prediction performance. In this research, we proposed a 
computational method based on a similarity scheme that 
integrates features derived from sequence and structure 
similarities. When compared with the state of the art, the 
proposed method has achieved highest performance with 
accuracy and F1 measure of 98.6% and 98.7% using XGBoost 
as classifier. Our results showed that by combining sequence and 
structure based features the lncRNA protein interactions can be 
better predicted and can also complement the experimental 
techniques for this task. 

Clinical Relevance— The lncRNA-protein interactions play 
significant role in regulating various biological processes. This 
can help in providing early diagnosis and better treatment for  
cancer related diseases. 

I. INTRODUCTION 

Recent studies have shown that only 2% of RNA 
transcripts are involved in the protein translation process. The 
remaining 98% that do not encode proteins were declared as 
transcriptional noise [1]. Long non-coding RNAs (lncRNAs) 
are a class of non-coding RNAs (ncRNAs) having more than 
200 nucleotides, which are involved in various biological 
processes including regulation of gene expression, 
transcription, post-translational regulation, chromatin 
modification, and disease progression Hu et al. (2018). 
LncRNAs usually have independent regulatory components 
such as promoters and enhancers. LncRNAs also have 
complicated higher-order or secondary structures and are 
longer than other types of ncRNAs [2]. 

Currently, lncRNAs are gaining increasing scientific 
interest as they are involved in a variety of processes which 
predominantly include cell differentiation, apoptosis and 
cancer progression. The lncRNAs have to bind to a protein to 
perform its function. Numerous experimental methods were 
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designed to discover lncRNA-protein interactions including 
RNA immunoprecipitation and mass spectrometry [1]. Such 
experimental techniques are costly and time-consuming, 
hence to complement such processes many computational 
methods have been proposed lately. NPInter database is built 
on the data produced from these high throughput 
experiments, hence is a widely used source for carrying out 
computational analysis.   

Zhang et al. proposed the sequence based ensemble method 
“SFPEL-LPI” [3] that extracts sequence derived features of 
lncRNAs and proteins. The features are based on a similarity 
scheme derived from lncRNA-lncRNA and protein-protein 
similarities. The method also predicted novel interactions that 
were verified by the literature. The reported accuracy and F1-
score of the model are 96% and 47%. Another study reported 
by Huan et al. proposed a lncRNA-protein interaction 
prediction model known as HLPI-Ensemble [1]. HLPI-
Ensemble specifically predicts only human lncRNA-protein 
interactions. The model is an ensemble method that combines 
SVM, Random Forests and XGB models. The method 
introduces random pairing strategy for generating a negative 
dataset for the prediction task. The model is trained on 
sequence based features with the reported accuracy of 74.4% 
and f1-score of 77.8%. Xie et al proposed a method known as 
LPI-IBNRA to predict the lncRNA-protein interactions, by 
implementing bipartite network recommender algorithm. The 
feature set combines known lncRNA-protein interactions, 
protein-protein interactions and lncRNA expression 
similarity features. The method achieved 88.4% accuracy and 
52.7% f1-score.  

Another method proposed by [4] integrated the random 
walk and neighborhood regularized logistic matrix 
factorization algorithms into a semi-supervised model. This 
method did not use negative dataset for training rather uses 
known interactions to predict the unknown ones. The model 
combines know lncRNA-protein interactions, lncRNA 
similarity network and protein similarity network for 
predicting lncRNA-protein interactions. The method has 
achieved 90% accuracy with 65.2% f1-score. 

Suresh et al. presented the RPI-Pred (RNA-protein 
interaction predictor), an SVM based method, which 
integrates both sequence and structure-based features for 
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predicting lncRNA-Protein interactions [5]. The protein 
structures are represented in terms of 16 structural fragments 
called protein blocks (PBs). For the RNA high order 
structure, RPI-Pred used the five classes of RNA secondary 
structures (RSS), namely, stem, hairpin, loop, bulges and an 
internal loop. The obtained PBs and RSS were combined with 
their corresponding amino acids and nucleotide sequences 
and passed to SVM for the classification of lncRNA and 
protein interactions. The accuracy of RPI-Pred on NPInter 
database is reported to be 86.9%. Pan et al proposed a fully 
sequence-based method, IPMiner [6] to predict the ncRNA-
protein interactions. IPMiner extracts the raw sequence 
composition features from protein and RNA sequences and 
used them into a stacked auto-encoder to extract the high-
level hidden features, then deploy them into a random forest 
to predict the interaction between ncRNA and protein. To 
integrate the different models’ predictions the stacked 
ensemble technique is used. The reported accuracy by 
IPMiner is 95.2% on the NPInter dataset. 

In addition to these methods, there are other computational 
methods based on deep learning algorithms. RPITER 
proposed by [7] is a hierarchical deep learning method for 
predicting RNA–protein interactions. For sequence coding, 
RPITER improved the method for coding the conjoint triad 
feature (CTF) by adding sequence and structure information 
into the coding vectors. RPITER used a convolution neural 
network (CNN) and a stacked auto encoder (SAE) 
architecture. The authors have compared their deep learning 
model with other reported methods on ncRNA-protein 
interaction predictions and the proposed model has 
outperformed with the achieved accuracy of 95.5%. Zhan et 
al proposed a method BGFE by employing the sequence-
based features in a deep learning model Stacked Auto 
Encoder (SAE) combined with random forest (RF) classifier 
Zhan et al. (2019). The K-mers sparse matrix is used to 
represent the lncRNA sequences and Singular Value 
Decomposition (SVD) is used to extract the lncRNA 
sequence-based features. They have employed Position-
Specific Scoring Matrix (PSSM) to extract protein sequence-
based features and the bi-gram algorithm to get feature 
vectors from PSSMs. SAE is used to learn high-level hidden 
information and RF to classify lncRNAs-proteins 
interactions. They used 3 different datasets and reported the 
results, on RPI488 dataset the accuracy is 88.68%, on 
RPI1708 the accuracy is 96.0% and on RPI2241 the accuracy 
is 91.3%.  

However, the reported methods have few limitations to 
address. First, the majority of the models used only positive 
dataset considering only the known interactions between 
proteins and lncRNAs which thus creates biased predictions. 
Secondly, the previous reported studies have considered all 
species data together to predict lncRNA-protein interactions 
however, the lncRNA sequence homology is very low so, one 
generalized model cannot be applicable for all species 
sequence data. Also, selecting suitable features for predicting 
lncRNA-protein interactions is challenging. The methods 
employing deep learning algorithms carry an inherent 
drawback of requiring more amount of data with more 

computing power as well. Keeping this in consideration, we 
have developed a computational method based on a similarity 
scheme that combines protein and lncRNA features derived 
from sequence similarities and structural similarities. Unlike 
previous machine learning based methods our method has 
utilized negative dataset and produced comparable results. 
Compared with the deep learning methods our method does 
not require high computation power to predict lncRNA-
protein interactions. 

II. METHODS 

A. Dataset 
The total of 8162 lncRNA-protein interactions were 

downloaded from NPInter [8] database that contains 
experimentally confirmed lncRNA-protein interactions. The 
sequences of lncRNAs were extracted from NONCODE V3 
[9] database, while the protein sequences were downloaded 
from Uniprot Consortium (2018). We kept only those 
lncRNAs whose nctype is NONCODE and lncRNA, inter-
class is binding and organism is Homo Sapiens because the 
focus of the study is predicting the human lncRNA-protein 
interactions. After removing the duplicate entries, the dataset 
has reduced to 3951 lncRNA-protein interactions containing 
1625 unique lncRNAs and 26 proteins. As NPInter database 
only provides the positive dataset comprising of interactions 
data, for creating a negative dataset we used the random 
pairing strategy as mentioned in [1] [10] [11].  

B. LncRNA-Protein Interactions 
We denoted the number of proteins with P and the number 

of lncRNAs with L and L∈P as a feature matrix of 
interactions between lncRNAs and proteins. The interaction 
among lncRNA Li and protein Pi could be denoted as follow: 

 I(pi,li) = {1 if pi interact with li, 0 otherwise. 

C. Local Pairwise Sequence Similarity 
Protein-protein and lncRNA-lncRNA local pairwise 

sequence similarities were calculated using the smith 
waterman algorithm (SW)  [12]. As the length of the 
sequences is varied, we used the normalized smith waterman 
score between protein p and p¯ by using the following 
equation as provided in [13]. The authors divide the SW score 
of two proteins by their geometric mean of the self-alignment 
SW score. same procedure is applied for lncRNAs to 
normalize the sequence similarity score 

𝑆(𝑝, 𝑝¯) = SW(p,p¯) / +𝑆𝑊(𝑝, 𝑝)   +𝑆𝑊(𝑝, 𝑝¯) 

D. Extracting Kmers 
Normally, the term k-mer refers to all possible length k sub-

strings that are present in a string. In computational genomics, 
k-mers refer to all possible (length k) sub-sequences from a 
sequence read obtained from DNA , RNA or a protein 
sequence. To extract the k-mer features we have used k=1,2 
and 3 for protein and K=1,2,3 and 4 for lncRNA to generate 
overlapping k-mers For proteins total extracted features for 
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K=3 are 203 = 8000 while in RNA the total computed features 
for K=4 are 44 = 256 

E. PC-PseAAC-General 
PseAAC-General provides the pseudo amino acid 

composition for protein sequences. Pseudo amino acid 
composition incorporates the global sequence order 
information of protein sequences into their feature vectors via 
the physicochemical properties of their constituent amino 
acids and have been widely used in bioinformatics tasks. 
There are different modes of PseAAC available in web server 
Pse-in-One [14] we used PC-PseAAC-General which 
contains additional features of gene ontology and functional 
domain mode. PC-PseAAC-General creates the protein 
feature vectors by combining the amino acid composition and 
global sequence-order effects. We have selected the 
parameters with lambda value 10 and weight factor 0.5. 

F. PC-PseDNC-General 
The abbreviation of PseDAC is pseudo deoxyribonucleic 

acid compositions for DNA/RNA sequences. There are 
various modes of PseDAC available in Pse-in-One [14] tool, 
we used PC-PseDNC-General to generate the feature vector 
for lncRNA. PseDNC uses the six local RNA structural 
properties of dinucleotides and using PC-PseDNC-General 
mode that is based on the properties of dinucleotides, we 
generated parallel correlation components feature vector of 
26 features using 6 physicochemical properties (Rise (RNA), 
Tilt (RNA), Twist (RNA), Slide (RNA), Shift (RNA),Roll 
(RNA)), and parameters with lambda =10 and weight factor 
= 0.5. 

G. Protein structure similarity 
For computing protein structure similarity we have 

computed the pairwise local structural alignment using the 
ProBis Konc and [15] tool, between 26 distinct proteins in 
filtered NPInter V2 dataset. ProBis algorithm uses the 
complete protein surfaces, motifs or protein binding sites to 
align the two protein structures. ProBis computes the pairwise 
alignment of entire protein structure or selected binding sites. 
It also enables the fast database searches for similar protein 
binding sites, it can search similar binding sites in different 
protein 3D structures without prior knowledge of their 
locations. 

H. lncRNAs structure similarity 
To calculate the pairwise structure alignment of LncRNA 

secondary structure we used RNAforester HHochsmann M 
[14]  tool distributed in Vienna RNA package Lorenz. 
RNAforester calculates¨ the pairwise alignment of RNA 
secondary structures. It computes tree and forest alignment 
using local similarity algorithm. The paired and unpaired 
bases of RNA secondary structure can be represented as a 
forest. 

I. Model Building 
The sequence and structure-based features were trained on 

SVM and XGB classifiers. Features were trained both 
separately and combined to check the model performance. 
For SVM the model was trained on both sequence and 

structure features separately and combined with different 
hyperparameters to obtain the highest performance of the 
model. The best results were obtained with kernel = linear, 
C=2 and gamma = 10. Four different models of XGB were 
trained on different features combinations (sequence based 
and structure based). The best performance was obtained 
using the n-estimator 77 and 100, learning rate 0.1, max depth 
5 and objective function binary: logistic. We have used 
stratified 5 fold cross validation to evaluate the performance 
of the models. 

III. RESULTS 

A.  Model Performance 
To evaluate our classification models we have 

implemented stratified 5 fold cross validation and computed 
the Accuracy, Precision, Recall, and F-1 score. The whole  
dataset is randomly divided into two parts 20% test set and 80 
% training set. Further, the training set is divided into five 
equal folds, each time 4 folds are used for training and one 
fold is used as a validation set. Both sequence and structural 
features were trained on SVM and XGB classifiers. The 
features were tested separately and combined to evaluate the 
model performance. The results obtained showed significant 
increase of the performance measure by adding structure-
based features. The results are tabulated in Table 1. By 
combining sequence and structure similarity features the 
XGB has achieved 98.68% accuracy  and 98.71% F1-Score. 

B. Comparison with the state of the art 
The proposed model is compared with the existing methods 

RPITER [6] and IPMiner [7]. RPITER is a deep learning-
based hierarchical model which predicts ncRNA-Protein 
interactions by integrating the sequence and structural 
information of lncRNAs and proteins, IPMiner is a fully 
sequence based method that extracts the raw sequence 
composition features from protein and RNA sequences and 
deploy them into a random forest to predict the interaction 
between ncRNA and protein. We have trained the two 
methods on our NPInter filtered dataset and evaluated the 
performance of the methods. On RPITER method, the 
classification model has achieved accuracy of 95.9%, 
precision and recall of 96.9 % and F1-score of 97.8% which 
is better as compared than the original datasets used in this  
study. IPMINER achieved 95.7% accuracy and 95.6% 
precision, recall and F1 score. The results are tabulated in 
Table 1. 

Both these methods are deep learning based which requires 
high computational power and comparatively large amount of 
training data for obtaining good results. Our method has 
tackled various limitations of the previous methods by adding 
the negative dataset for better prediction and building a 
human specific model for lncRNA-protein prediction. 
Moreover, we have incorporated structure based features 
which are deemed to increase the model efficiency. We 
believe that the proposed method has achieved comparable 
results with the state of the art and can also be computed with 
limited resources. 
 

2102



  

TABLE I.  RESULTS OBTAINED ON BOTH SEQUENCE AND STRUCTURE 
BASED FEATURES 

TABLE II.  COMPARISON WITH THE STATE OF THE ART 

 

IV. CONCLUSION 
 
Long non-coding RNAs (lncRNAs) play a significant 

functional role in regulating various biological processes and 
disease progression, by interacting with specific proteins. The 
experimental approaches for predicting such interactions are 
very time consuming and costly. We aimed to complement 
this, by developing a computational method that predicts 
protein-lncRNA interactions in a speedy and cost-effective 
manner. Our computational method combines the features 
derived from the sequence and structure of proteins and 
lncRNAs. The model is designed specifically for human 
lncRNA-protein interactions unlike the previous approaches. 
SVM and XGBoost models were trained on sequence and 
structure based features separately as well as combined by 
applying 5 fold cross validation. The results with XGBoost 
has outperformed the other classification models by achieving 
98.6% accuracy and 98.7 F1-score. We have tried to 
implement a simpler model that caters all the required features 
and can be executed in less time and resources. Although, we 
have achieved very significant results, still the method has 
few limitations which includes the limited availability of 
known lncRNA-protein interactions data and the 
unavailability of protein structure data for deploying structure 
based features for model execution.  
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Method Acc% Pre% Rec% F1% 

Proposed Method 98.6 97.7 99.6 98.7 

REPITER Peng et al. 
(2019) 

95.5 96.9 96.9 97.8 

IPMiner Pan et al. 
(2016) 

95.7 95.6 95.6 95.6 

Model LncRNA 
Features 

Protein 
Features 

Accuracy F1-
Score 

XGB All features All features 98.68 98.71 

XGB Sequence 
features 

Sequence 
features 

74.85 76.14 

SVM All features All features 70.83 73.04 

SVM Sequence  
features 

Sequence 
features 

72.16 74.0 
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