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Abstract— In this work, we propose an unsupervised algo-
rithm for fundamental heart sound detection. We propose to
detect the heart sound candidates using the stationary wavelet
transforms and group delay. We further propose an objective
function to select the candidates. The objective function has
two parts. We model the energy contour of S1/S2 sound using
the Gaussian mixture function (GMF). The goodness of fit for
the GMF is used as the first part of the objective function. The
second part of the objective function captures the consistency
of the heart sounds’ relative location. We solve the objective
function efficiently using dynamic programming. We evaluate
the algorithm on Michigan HeartSound and Murmur database.
We also assess the algorithm’s performance using the three dif-
ferent additive noises– white Gaussian noise (AWGN), Student-t
noise, and impulsive noise. The experiments demonstrate that
the proposed method performs better than baseline in both
clean and noisy conditions. We found that the proposed method
is robust in the case of AWGN noise and student-t distribution
noise. But its performance reduces in case of impulsive noise.

I. INTRODUCTION

Automatic detection of fundamental heart sounds from
the phonocardiogram (PCG) recording is an essential step
in acoustic cardiac signal analysis [1]. The detection of
fundamental heart sound can assist in visualizing the heart
sounds [2] and identify systolic or diastolic regions of a
PCG, which helps in the diagnosis of pathological murmurs,
clicks, and other heart sounds. The first heart sound (S1)
occurs after the R-peak (ventricular depolarisation) in the
electrocardiogram. The second heart sound occurs between
the systole and diastole regions.

There are various methods in the literature that address the
problem of S1/S2 detection. Some of the early methods are
threshold-based, which uses a threshold on various features
of the PCG signal to detect S1/S2. Some of the examples
of features are Shannon energy [1], squared energy [3],
frequency domain envelograms [4], Hilbert envelope [5]
and wavelet transforms [6]. However, the threshold used
in threshold-based methods depends on the quality of the
recordings.

To address the limitation of the threshold-based methods,
there are various approaches, that use a multi-dimensional
feature extraction from the PCG segments followed by
different classifiers to detect the S1/S2 sounds. These features
include time domain features [7] or frequency domain fea-
tures [8]. There are various classifiers used including Neural
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Networks [9], [10], decision tree [11], support vector ma-
chines (SVM) [12], hidden Markov model (HMM) classifier
[13], [14] and deep neural networks [15]. The performance
of a method depends on the robustness of the features used
for the classification.

The main limitation of the methods discussed above is
that no temporal information is used for the S1/S2 predic-
tion. In order to capture temporal information, Chend et
al. used an ergodic HMM with Gaussian mixture model
(GMM) distribution as emission density [16] to find the
S1/S2 sounds. Typically, three major limitations affect the
performance; of S1/S2 detection: 1) the duration distribution
of S1/S2 may-not match the test recording, 2) the features
used may not follow the emission distribution assumption,
3) the training emission distribution may not match the test
emission distribution. There are methods in the literature
that handles the first and second limitations. Schmit et al.
modified the hidden semi-Markov model (HSM) to get a
better duration model of HMM to improve the performance
[17]. An adaptive duration model methodology was proposed
in [18] and [19]. The SVM and logistic regression function
are also used for emission probability estimation. The HSM
with logistic regression function based emission probability
estimation was used as the baseline algorithm in 2016 Phy-
sioNet Challenge. The main disadvantage of these methods
is that the feature distribution may not follow the assumed
distribution.

There are various methods that learn the features during
training. The convolution neural network has been used to
directly predict the emission probability to improve the per-
formance [20]. One of the recent papers uses Bi-directional
Long Short Term Memory Networks with attention to detect
the heart sounds to improve the performance [21]. However,
it has already been shown that the deep learning methods
fail when the test recording conditions are different from the
training conditions [22].

In this work, we propose an unsupervised method for
heart sound detection. First, we detect the candidate of
S1/S2 using the multi-scale product and group delay based
method. We propose an objective function to select the
optimal S1/S2 locations from the detected candidates. The
objective function has two parts. The first part models the
short term energy of the heart sound as a mixture of Gaussian
functions and uses the goodness of fit of the energy contour
to score the locations of S1/S2. The second parts uses
a scoring function that accounts for the relative positions
consecutive S1 sounds, S2 sounds, and S1/S2 locations.
The maximization of this objective functions is efficiently
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Fig. 1. The block diagram of the proposed fundamental heart sound
detection.

solved using the dynamic programming to estimate the S1/S2
locations. We evaluate the algorithm on Michigan Heart
Sound and Murmur database. We also systematically evaluate
the algorithm’s robustness using three different additive noise
types: white Gaussian noise, Student-t noise, and impulse
noise. Few algorithms in the literature study the robustness
of the method in various synthetic noise conditions [10]. The
synthetic noise allows us to control various parameters to
understand their effect on the performance. The experiments
demonstrate that the proposed method performs better than
baseline in both clean and noisy conditions. We found that
the proposed method is robust in case AWGN noise and
student-t distribution noise. But its performance reduces in
case of impulsive noise.

II. PROPOSED FUNDAMENTAL HEART SOUND DETECTION

The goal of heart sound detection is to find the locations of
S1/S2 sounds given the heart sound signal (s[n]), sampled at
the sampling rate fs. Fig. 1 shows the block diagram of the
proposed heart sound detection. It involves two main parts.
We discuss the details of each parts in the next subsections.

A. Candidate detection

The main feature of S1/S2 sounds is that they are impul-
sive in nature, but it can be challenging to find them in low
signal-to-noise ratio (SNR) conditions. Hence, we propose to
estimate the candidates of S1/S2 using the multiscale product
of the stationary wavelet transform. The multi-scale product
has been shown to perform well in the detection of impulse
like signal in low SNR conditions [23]. First, we decompose
the s[n] into wavelet components as follows:

dj(n) =
∑
k

gj(k)aj−1(n−k), aj(n) =
∑
k

hj(k)aj−1(n−k)

(1)
where g(k) and h(k) are the details and approximation
filters[23]. The max value of j is given by log2(N), where
N is the number of samples in the signal. a0(n) = s[n]. The

Fig. 2. Three illustrative examples: The first example is a normal heart
sound, the second example is the heart sound with AWGN and the third
example is heart sound with murmur. first row: heart sounds, second
row: pH [n] and the detected candidates in black diamond, third row: the
corresponding energy contours. In the first row, the red lines indicate the
S1 boundaries and the black lines indicates the S2 boundaries. The dotted
lines indicate the start of a segment and solid lines indicates the end of a
segment.

multi-scale product using five levels is given by

p[n] =

5∏
j=1

dj [n] (2)

We further half wave rectify the p[n] to get the pH [n]. The
resulting pH [n] is a sparse impulse like signal as shown in
Fig. 2. Its clear from the figure that the signature of S1/S2
is enhanced and less sensitive to noise/murmurs in the heart
sound (Fig 2(b) and (c)). The zero crossings (negative value
to positive value) in group delay computed from pH [n] are
used as the candidates of S1 or S2. The set of detected
candidates is indicated by I, which are shown using the
black diamond in second row of Fig. 2. It is clear that the
candidate detection process is robust to AWGN. It is also
clear that the other heart sound, i.e., S3/S4, or impulsive
noise could be detected as candidates for S1/S2. We further
propose a selection technique from these candidates to filter
S1/S2 locations.

B. Candidate selection

Given the candidate set I, the goal of candidate selection
is to find the locations of S1 (Ψ) and the locations of S2 (ζ)
by maximizing the following cost function.

Ψ∗, ζ∗ = argmaxΨi,ζi∈I

N∑
i=2

C(Ψi, ζi,Ψi−1, ζi−1)

such that Ψi > ζi > Ψi−1, 2 ≤ i ≤ N
(3)

where C(Ψi, ζi,Ψi−1, ζi−1) = log(E(Ψi, ζi)) +
log(T (Ψi, ζi,Ψi−1, ζi−1). The cost function consists
of two parts. The first part is related to the goodness of fit
based cost given the locations of S1 and S2. The second
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part of the cost function captures the consistency in the
locations of S1/S2 relative to the heart rate. We explain
these two parts of the cost function in detail in the next
subsections.

1) Goodness of fit (GoF): We divide the s[n] into frames
using a window length of Nw and the shift Ns. We compute
short-time energy as follows:

e[n] =

n×Ns+Nw∑
m=n×Ns+1

s2[m]

The short-time energy contours computed for the three
examples are shown in Fig. 2. It is clear from the figure
that the energy is higher in case of the sounds S1 and S2.

It is clear from the figure that the energy contour of both
S1 and S2 can be jointly modeled using Gaussian mixture
model (GMM) with the S1 peak at µ1 and S2 at µ2 as
follows:

f(xn;µ1, µ2) = a+b×xn+c×e−
(xn−µ1)2

d2 +g×e−
(xn−µ2)2

f2

(4)
The affine term a+b×x is added to account shift in energy

contour because of the murmurs. Given the energy contour
and the locations of S1 and S2, we compute the minimum
error.

E(µ1, µ2) = min
a,b,c,d,g,f

∑
n∈R

(f(xn;µ1, µ2)− s[n])2 (5)

where R ∈ [µ1 − l, µ2 + l]. R is the range of summation
that considers l samples before the given S1 location and b
samples after the S2 location. We solve the optimization in
eq 5 using gradient descent 1.

2) S1/S2 location consistency: The goodness of fit alone
is not sufficient to filter the candidates and differentiate
between S1 and S2. Hence, we define some priors on the
distance between consecutive S1, S2, S1 to S2 and S2 to
S1. Let the consecutive locations of S1 be Ψi and Ψi−1

and consecutive locations of S2 be ζi and ζi−1. Suppose H
indicates the average distance between consecutive S1. The
consistency cost of the S1/S2 locations is given by

TS1(Ψi−1,Ψi) = e−α(Ψi−Ψi−1−H)2 , (6)

TS2(ζi−1, ζi) = e−α(ζi−ζi−1−H)2 (7)

The distance between consecutive S1 or S2 locations may
not be sufficient to differentiate the S1/S2 sounds. Hence,
we further impose the location consistency constraint on the
distance between S1 to S2 and S2-S1. The costs are defined
as below

TS1S2(Ψi, ζi) = e−θ(Ψi−ζi−γH)2 (8)

TS2S1(Ψi+1, ζi) = e−η(Ψi+1−ζi−(1−γ)H)2 (9)

The α, η and controls the cycle to cycle variability in the
location of consecutive S1 or S2. The distance from S1 to

1Please note that the objective function is not convex
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Fig. 3. Comparison of sensitivity, specificity and F-score for the PMGDP
and HMM for S1/S2 sounds

the following S2 is typically less than H
2 and the distance

from S2 to the following S1 is typically higher than the H
2 .

Hence the typical value of γ < 0.5. This cost can help in
differentiating the S1 sound from S2 sound.

The total location consistency loss is defined as the log
sum of four losses in eq 6-9.

3) Optimization: The maximization of eq. 3 is a combi-
natorial problem and has high time complexity. Hence, we
propose to solve it using dynamic programming to reduce
the complexity.

III. EXPERIMENTS AND RESULTS

A. Data sets and baseline schemes

We evaluate the heart sound detection algorithm using
the Michigan Heart Sound and Murmur database (UMHS)
[24]. There are 23 PCG signals in this corpus, which include
four healthy subjects ad 19 pathological cases. The sampling
frequency of the signal is 44.1kHz. The boundaries of S1/S2
were marked using audacity by two annotators and verified
by an expert cardiologist.

We use an HMM with a logistic density-based segmen-
tation method as a baseline, for which we use a public
implementation given by the authors [25]. The HMM is a
supervised method. We use a leave one out cross-validation
for HMM to get the S1/S2 predictions for all recordings.

B. Experimental setup

We resample the recording to 2KHz as there is very little
spectral content above 1kHz. We estimate the heart rate(H)
using autocorrelation method. We compute the energy con-
tour using a window size of 50ms with a shift of 10ms. We
low pass filter the energy contour using a cutoff frequency
of 100Hz. We set γ = 0.25 to have a prior position of the
S2 to be in one-fourth of the cardiac period. We set the α to
1, θ and η to 0.1. We initialize the variable a and b to zero,
c and g to 0.5, d and f to 0.1 and solve eq. 5 using gradient
descent with a learning rate of 10−3 for 100 iterations. We
indicate the proposed method by PMGDP.

We also evaluate the model in three additive noise con-
ditions – additive white Gaussian noise (AWGN), Student-t
distribution, and impulse noise. The AWGN noise added to
the clean signal at an SNR level of 30dB, 10dB, 0dB, and
-5dB. A typical distribution of noise observed in heart sound
is high tailed in nature; it’s mainly due to the stethoscope
diaphragm rubbing with the cloth or the skin. To do a
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Fig. 4. An illustration of S1/S2 detected by PMGDP, blue waveform is for the heart sound signal, the red line indicating boundary of S1 and the black
line indicating boundaries of S2 sounds. The detected S1 and S2 sound are indicated by ♦ symbol and ∗ symbol respectively. The top row illustrate
the detection for clean sound and the bottom row indicate it for the noisy sounds. (e): AWGN (0dB) (f) impulse noise of 0.2s duration.(g,h):student-t
noise(gamma=2,gamma=1.5)
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Fig. 5. The F-score comparison of PMGDP and HMM for S1 sound (*)
and S2 sound (♦) for different noise conditions.

systematic study of the robustness of the methods for dif-
ferent tail probability, we add the Student-t noise at different
degrees of freedom (gamma) in the range 3,2.5,2,1.5. The
extreme case of heavy-tailed noise is the impulse noise.
The impulse noise of duration D is added ten times to
the whole signal at randomly chosen locations. For each of
these ten times, a signal chunk of duration d is replaced by
{max(|s[n]|),−max(|s[n]|)}. We experiment with various
values of d, namely, 0.1, 0.2, 0.3, 0.4 seconds. We use the
HMM model trained on the clean signal to evaluate the noisy
test cases.

We evaluate S1/S2 detection performance using sensitivity
(Se), specificity (P+), and F-score (FS) similar to [17]. We
consider that the detection is True positive if there is a
prediction within S1/S2 segments. If there is more than
one detection inside the S1/S2 segment, it is treated as a
False-positive. Any detection outside the S1/S2 segmented
is treated as False positive; no detection inside an S1/S2
segment is treated as False-negative. If there no detection
within the S1/S2 segment is treated as True negative.

C. Results on clean heart sound

Fig. 3 shows the comparison of sensitivity, specificity, and
F-score for the PMGDP and HMM for S1/S2 sounds. It is
clear from the figure that the PMGDP performs better than
HMM in S1 in terms of all three metrics. In the S2 sound, the
sensitivity values of both the methods are comparable, and
the PMGDP method’s specificity is better than that using
HMM. It could be mainly because of the lack of training
data for the HMM, where it detects some of the rare events
such as S3, S4 sounds, or systolic click as S2. We found that
the PMGDP can eliminate the S3/S4 events mainly because
of the location consistency part in the cost function. The F-
Score is very poor for PMGDP when the S2 is missing in
the test recording, where it detects S1 or any other noises as
S2.

D. Results on noisy recordings

Fig. 5 shows the F-score for different noises and the noise
parameters. The Fig. 5(AWGN) shows the F-score using
HMM and PMGDP for S1S2 sounds at different SNR levels.
It is clear from the figure that the F-score for HMM is
poor mainly because the HMM is failing to generalize to
an unseen noise. The F-score using PMGDP for both S1/S2
decreases as SNR decrease. The Fig. 5(student-t) shows the
F-score of HMM and PMGDP for S1/S2 sounds at different
gamma value. It is clear from the figure that the performance
of the PMGDP decreases with the degree of freedom. The
lower degrees of freedom causes more outliers in the signal,
making it challenging for the algorithm to detect the S1/S2
sounds. The Fig. 5(impulse-noise) shows the F-score of
HMM and PMGDP for S1S2 sounds at the different duration
of impulse noise. But the performance of PMGDP drastically
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reduced at the small duration of the noise (0.1s) because the
GoF fit biases the predictions towards the noisy regions. We
also found that the HMM performance is poor even in those
cases.

Fig. 4 shows an illustrative example of PMGDP based
S1/S2 detection for clean and noisy sounds. In the case of
clean sounds, the detection of S1/S2 is accurate in most
cases. In case of (a), the detection is good even though the
strength of S1/S2 is comparable. In case of (b), the S1 is
detected accurately even though there is S4 sound. In case
of (d), the S2 is detected accurately even with the split S2
signal. In case of (c), the prediction of S2 is wrong, and
S1 is missed. It is mainly because the candidate selection is
failing to detect the S2 as a candidate. In the case of (e),
the PDMGDP can detect the S1/S2 with the 0dB noise. In
the case of (g&h), the detected locations are accurate even
though there is outlier noise. If the outlier noise magnitude
is too high, the GoF part dominates the objective function
resulting in the false detection.

IV. CONCLUSION

In this work, we proposed an unsupervised two-step
method for fundamental heart sound detection. The first
step involves the detection of heart sound candidates using
wavelet transform and group delay. In the second step, the
objective function is optimized using dynamic programming.
The objective functions consider the cost of fitting Gaussian
mixture function to the energy contour and relative location
of S1/S2. We evaluated the method using Michigan Heart-
Sound and Murmur database. The experiments demonstrated
that the proposed method achieves a better F-score compared
to a supervised HMM-based method in clean as well as in
noisy conditions. As part of future work, we plan to include
the costs based on the spectral content of S1/S2 for the robust
detection in the case of impulsive noise.
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