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Abstract— Continuous kinematics estimation from surface
electromyography (sEMG) allows more natural and intuitive
human-machine collaboration. Recent research has suggested
the use of multimodal inputs (sEMG signals and inertial
measurements) to improve estimation performance. This work
focused on assessing the use of angular velocity in combination
with myoelectric signals to simultaneously and continuously
predict 12 joint angles in the hand. Estimation performance
was evaluated for five functional and grasping movements in
20 subjects. The proposed method is based on convolutional
and recurrent neural networks using transfer learning (TL).
A novel aspect was the use of a pretrained deep network
model from basic joint hand movements to learn new patterns
present in functional motions. A comparison was carried out
with the traditional method based solely on sEMG. Although
the performance of the algorithm slightly improved with the
use of the multimodal combination, both strategies had similar
behavior. The results indicated a significant improvement for a
single task: opening a bottle with a tripod grasp.

Index Terms— Angle estimation, angular velocity, deep learn-
ing, inertial measurements, recurrent and convolutional neural
networks (RCNN), surface electromyography (sEMG), transfer
learning (TL)

I. INTRODUCTION

Rehabilitation and assistive technologies are often aimed
at the restoration and functional compensation of body
structures after injuries or neuromuscular disability. These
technologies are based on human-robot collaboration [1].
The developers have focused on improving the performance
of upper limb exoskeletons and prostheses controlled by sur-
face electromyography (sEMG). The sEMG signals are still
used due to their easy application, noninvasiveness, neural
information, and wide use for human-machine interfacing in
clinical practice [2]–[6].

The human motor system performs movements with mul-
tiple degrees of freedom (DoF) simultaneously during the
execution of kinetic chain movements. A suitable strategy
based on sEMG to address this challenge is continuous
and simultaneous motion estimation [3], [4]. This paradigm
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provides a more natural and intuitive way for robotic devices
that mimic body movements [4].

Despite the usefulness of sEMG signals as input sources,
the estimation algorithm performance is influenced by several
factors, such as the change of position of the extremities
and their orientation [5], [7]. One of the current solutions
for the limb position effect is the multimodal combination
using inertial sensors as an additional source of information
[5], [7]. sEMG sensors, in addition to Inertial Measurements
Units (IMUs) have been used for predicting joint angles [8].
IMUs usually comprise several sensors, such as gyroscopes,
accelerometers, and magnetometers. These sensors provide
information about the movement after it has been executed,
while sEMG signals allow the prediction of motor intent
[8]. Recent research work (e.g., [9]–[13]) has suggested the
hypothesis that models based on multisensory modality out-
performs conventional method based exclusively on sEMG.

Most estimation methods are developed using artificial
neural networks (ANN) [2]–[4], [13]–[16]. Even so, few
research works have used multimodal combinations. Nev-
ertheless, the precision of these algorithms in estimating
motion kinematics is still inadequate to be implemented in
practice [17], [18]. Currently, deep neural network-based
techniques have been published: [19], [20]. These deep
learning methods allow automatic feature extraction [21].
In addition, they allow working with large amounts of data
favoring the use of other sources of information.

Some of the deep learning algorithms in the myoelectric
control paradigms are the following: convolutional networks
(CNNs), recurrent networks (RNNs), as well as the fusion
of both: RCNN [5], [6], [21]. One of the limitations of
CNNs is that they can only process data in a single window,
thus losing the ability to express time-dependent features
[18]. RNNs have the advantage of being able to perform
sequential processing, which is ideal for myoelectric and
inertial signals due to their temporal nature [21]. RCNN
combines the advantages of RNNs and CNNs, optimizing
the deep architecture for better performance [18]. This model
has been selected for the estimation carried out in the present
study.

This work describes a method based on deep neural
networks and the multimodal combination: sEMG + IMU.
The aim is to evaluate the effect of the inclusion of inertial
measurements as another source of information to enhance
the performance of continuous estimation algorithms com-
pared to the traditional use of myoelectric signals.
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II. MATERIALS AND METHODS
A. Ninapro database

The dataset used was obtained from the seventh Ninapro
database (DB7), collected by Krasoulis et al. and described
in [7]. The data used for training and testing comprised
sEMG signals and kinematic information from twenty right-
handed and able-bodied subjects. Myoelectric signals and
IMU data were collected using 12 sEMG electrodes, and
each one incorporated a tri-axial accelerometer, gyroscope,
and magnetometer measuring acceleration, angular velocity,
and magnetic field, respectively. Raw gyroscopes values
[deg/s] were used as complementary input. All data were
synchronized via linear interpolation to the highest sampling
frequency (i.e., 2000Hz). Hand angles were recorded by
using a dataglove (Cyberglove II, 18-degree of freedom
(DOF)). Twelve joints were selected for estimation: five
proximal interphalangeal (PIP), five metacarpophalangeal
(MCP), the trapeziometacarpal (TMC) and the wrist yaw
(WY) joint angles. These joints are used in most myoelec-
tric commercial hand prostheses. Five continuous classes
corresponding to grasping and functional movements were
predicted, including rest periods: (A)- index finger extension,
(B)- ring, (C)- power, (D)- parallel extension, and (E)- open
a bottle with a tripod grasp (i.e., 21, 23, 27, 35, and 38
respectively, from exercise 2 included in DB7). The basic
finger and wrist movements were used in the pre-training
for transfer learning.

B. Preprocessing

In order to remove the movement artifacts, all sEMG
channels were bandpass-filtered (4th order Butterworth with
20–500Hz cutoff frequencies). The signals were rectified and
then low-pass filtered by a 2nd order Butterworth filter with
cut-off frequency to 6 Hz to obtain the linear envelope. This
last filter was also used for angular velocity measurements
processing.

C. Transfer learning (TL)

The proposed model in this work is based on recurrent
and convolutional neural networks, which require training
with a significant number of samples. Although the database
is extensive, each class has only six movement repetitions.
In order to consider the processing window size of each
sequence, the training sets are made small compared to the
total number of weights to be adjusted by neural networks.

Due to these limitations, transfer learning was performed.
The hypothesis is that a pre-trained deep network model from
basic joint movements can be used as a starting point to learn
new patterns present in functional motions. Then, the learned
features are transferred to a new motor task using a smaller
number of training observations. TL can be applied from data
obtained across multiple subjects [6], but there are individual
differences in the subjects’ anatomy. Therefore, using data
from basic movements can also improve the performance of
movement estimation with more significant variation.

The pre-trained networks (PTNs) were obtained using
the signals acquired during isometric and isotonic hand

contractions exercises and basic movements of the wrist (i.e.,
classes 1 to 17, whole exercise 1).

1) PTN architecture design: The proposed network (see
Table I) includes a convolution, batch normalization and
ReLU blocks, one Long Short-Term Memory (LSTM) recur-
rent layer that outputs the last element of a sequence, and one
dense layer. In order to perform the convolutional operations
on each time step independently, the structure includes a
sequence folding layer before the convolutional layers. Since
the LSTM layer expects sequences of vectors as inputs, the
output of the convolutional layers is reshaped to sequences
of feature vectors by inserting a sequence unfolding layer
and a flatten layer between the convolutional layer and the
LSTM one.

TABLE I
RCNN PROPOSED MODEL

No Layers Parameters

1 Sequence Input: 2D Window: channels x samples

2 Sequence Folding

3 Convolution 2D: Kernel size: 3, Number of filters: 64, Stride: 1

4 Batch Normalization

5 ReLU

6 Sequence Unfolding

7 Flatten

8 LSTM: Hidden states: 128

9 Dropout: Probability: 0.5

10 Fully Connected: Output size: 12

11 Regression: Loss Function: Mean Square Error

2) Training settings: Both models (PTN and the proposed
network) were adjusted using stochastic gradient descent
with momentum. The initial learning rate was set to 0.01.
The gradient threshold was set to 1 because it prevents the
gradients from exploding. In order to avoid over-fitting, batch
normalization, dropout, and early stopping were used.

3) Procedure: Although there are several ways of carry-
ing out TL, the one used in this work is the most common
approach, in which it keeps the features from the earliest lay-
ers of the pre-trained network (the transferred layer weights).
Furthermore, the final layers are replaced with new layers
adapted to the new data. Then, the learning rate factors were
set to 10 for the new dense layer. In this way, the layer learns
faster than the other transferred layers. The replaced layers
were the last fully connected layer and the final regression
layers of the PTN. Fig.2 shows the structure of the deep
neural network.

The data were normalized to have zero mean and unit
variance. The test and validation data were also standardized
using the same training parameters. The input sequence is
a matrix constructed on a segment of the sEMG and IMU
channels. The sliding window method was used to define
the time window. In this case, the length of the shifting
window was set to 50 ms (100 samples) and the increment
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Fig. 1. Estimated and real joint angles from multimodal combination and traditional method. The data corresponds to Subject 10 during last repetition
of the movement E.

to 30 ms (60 samples). Four repetitions were used to create
the training set, one as the validation set and the remaining
repetition as the test set.
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Fig. 2. Transfer learning to retrain a RCNN

III. RESULTS AND DISCUSSION

The performance evaluation of the proposed model was
based on widely used regression metrics. The following
metrics were used: correlation coefficient (CC), global co-
efficient of determination (R2), and normalized root mean
square error (NRMSE). CC can measure the similarity be-
tween signal shapes, while global R2 evaluates the perfor-
mance from all the joints involved. NRMSE was calculated
from residual prediction error between the estimated and
measured angles. NRMSE is used to standardize the RMSE
to the difference between maximum and minimum real data.
The values of global R2 and CC closer to 1 indicate good
accuracy, and smaller values of NRMSE indicated that the
model has a better performance.

Fig.1 shows a qualitative comparison between joint angles
estimated from sEMG and the multimodal combination ver-
sus measured angles. In this example, the mean values of the
global R2 and CC estimates from sEMG (i.e., 0.62 and 0.85,
respectively) are less than the estimate from sEMG+IMU
(i.e., 0.75 and 0.89). The opposite happens with the NRMSE
mean value across joints, which is higher for the model from
sEMG (0.14) than for the combination (0.12). The main error
in the estimation from the conventional method occurs at the
beginning of the activation period, but, still, in both informa-
tion source comparisons, the model convergence at the end
of the rest period is almost the same and reasonably close
to the actual measurements. In most cases, the midline and
amplitude range from predicted angles match the recorded
ones.

An analysis of variance (ANOVA) was performed in order
to test whether the average values of each performance index
were significantly different for both types of inputs, i.e.
sEMG-only and sEMG+IMU. The average was calculated
from the values obtained for each joint across all subjects.
The Kolmogorov-Smirnov test was applied, and it does not
reject the hypothesis that the data come from a normal
distribution at the 1% significance level. In the ANOVA test,
the CC with sEMG+IMU (0.70 ± 0.12) is higher than sEMG
(0.64 ± 0.11) for movement E, and the means both are
significantly different (p=0.000048). This kind of movement
presents more variation in joint angle shapes than the others.
A median analysis also corroborates these results. Fig.3
shows that the notches in the box plot overlap in movements
A to D. Thus, the results suggest that the medians differ in
movement E. However, for the remaining movements, there
were no significant differences.

Table II shows the statistics of NRMSE and global R2

across all subjects and joints. Regarding the sample means,
there were no differences for all movements according to the
ANOVA test. Wang et al., in [22], obtained similar NRMSE
values from sEMG using an RNN based on LSTM layers.
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Fig. 3. Differences between the medians of the CC values across all
subjects for both input sets (sEMG and sEMG+IMU). The blue boxes
correspond to the multimodal combination while the black boxes correspond
to sEMG. The central mark in the boxes represents the median; the edges
of the boxes are the 25th and 75th percentiles.

Concerning estimation accuracies from global R2, the results
were low. These results might be because this performance
index not only allows quantifying the continuous movement,
but also the simultaneous movement from all joints and
their DoFs. So for functional movements, the estimation
performance is still a challenge. Even so, there were subjects
with performance between 0.75 and 0.85. For the multimodal
combination, more subjects exceeded the value of 0.75 than
for the conventional method.

In all movements and joints, the multimodal combination
improves the angle estimation in comparison with traditional
methods. Even so, the statistics show similar results for both
comparison criteria.

TABLE II
NRMSE AND GLOBAL R2 , (MEAN ± STANDARD DEVIATION)

Classes NRMSE global R2

sEMG sEMG+IMU sEMG sEMG+IMU

A 0.191±0.037 0.185±0.039 0.349±0.270 0.391±0.216

B 0.199±0.041 0.188±0.040 0.624±0.182 0.664±0.175

C 0.223±0.041 0.217±0.049 0.539±0.217 0.553±0.257

D 0.212±0.057 0.202±0.059 0.464±0.234 0.520±0.256

E 0.218±0.046 0.214±0.048 0.636±0.191 0.663±0.190
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