
  

  

Abstract— Obstructive Sleep Apnea (OSA) is a sleep disorder 
associated with reduced vigilance. Vigilance status is often 
measured using the Psychomotor Vigilance Task (PVT). This 
paper investigates modelling strategies to map sleep spindle 
(Sp) characteristics to PVT metrics in patients with OSA.  
 Sleep spindles (n=2305) were manually detected across blocks 
of sleep for 20 patients randomly selected from a cohort of 190 
undergoing Polysomnography (PSG) for suspected OSA. Novel 
Sp metrics based on runs or “bursts” of Sps were used to model 
Sp characteristics to standardized (z) Lapse and Median 
Reaction Time (MdRT) scores, and to Groups based on zLapse 
and zMdRT scores. A model employing Sp Burst 
characteristics mapped to MdRT Group membership with an 
accuracy of 91.9%, (95% C.I. 90.8-93.0). The model had a 
sensitivity of 88.9%, (95% C.I. 87.5-89.0) and specificity of 
89.1% (95% C.I. 87.3-90.5) for detecting patients with the 
lowest MdRTs in our cohort.  

 
 

Clinical Relevance— Based on these results it may be possible 
to use Sp data collected during overnight diagnostic PSG for 
OSA to detect patients at risk for attention deficits. This would 
improve triage for OSA therapy by identifying at risk patients 
at the time of OSA diagnosis and would remove the need to 
employ additional testing to assess vigilance status.   

I. INTRODUCTION 

Sleep Spindles (Sp) are a defining element of NREM 
(Stage N2) sleep. Patients with untreated Obstructive Sleep 
Apnea (OSA) have abnormal Sp characteristics [1], chronic 
sleep restriction and a high risk for altered vigilance [2]. The 
Psychomotor Vigilance Task (PVT) measures changes in 
vigilance due to sleep loss [3]. Due to staffing and time 
constraints, the PVT is not conducted clinically, and 
normative population data for healthy and patient- 
populations is lacking. If Sp characteristics measured during 
diagnostic Polysomnography (PSG) for OSA can be mapped 
to PVT outcomes in an OSA cohort, then both OSA and 
attentional loss could be detected at a population level   and 
during a single procedure in this at-risk group.  

 
The PVT measures the reaction time (RT) to a visual or 

auditory stimulus. Lapses (a RT≥500msec) are the most 
commonly reported element of the PVT [3]. Lapse numbers 
increase with the time spent at a task, and after both acute 
and chronic sleep restriction (as in OSA) [3]. They are 
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subject to circadian effects, and are highest in the morning 
and lowest in the evening [4]. Lapse numbers have been 
correlated to poor performance in diverse activities including 
working memory [5] and driving simulation tasks [6], but 
they occur interspersed with faster RTs. The Median RT 
(MdRT) may indicate the predominance of slowing of RTs.  
 

A Sp occurs during bursts of Thalamocortical activity in 
Stage N sleep with a refractory period of 5-20seconds [7]. Sp 
density[8] and in particular the density of Fast Sp (FSp,13-
16Hz)[9] is correlated to memory performance. Sleep 
restriction results in a decrease in memory performance and an 
increase in Lapses, but the two are not thought to be 
related[10]. Neither Sp characteristics [1], PVT outcomes or 
memory [11]are improved reliably after treatment of OSA 
with Continuous Positive Airway Pressure (CPAP). 

A recent pilot study (n=7) found correlations between 
reduced Stage N Sp density, and increased lapses after acute 
sleep deprivation in patients with severe OSA[12]. Sp density 
is a frequently used metric of Sp performance, but does not 
directly measure the functional burst nature of Sps. Little is 
known about interactions between Sp Bursts, Sp density and 
lapses or slowing of RTs in chronic sleep restriction or across 
different times of the sleep period in patients with OSA.  

This study seeks to investigate relationships between Sp 
metrics, Lapses and the MdRT in patients undergoing 
diagnostic PSG for suspected OSA, and to determine if Sp 
burst Characteristics can be mapped to RT outcomes using 
data acquired from Diagnostic PSG.  If successful diagnosis of 
OSA and vigilance deficits could be performed with a single 
night of PSG, patients with vigilance deficits could be 
identified and triaged to receive sleep and lifestyle therapies. 

II. MATERIALS AND METHODS 

A. Data Gathering 
Data for this retrospective study was gathered from a 

cohort undergoing PSG for suspected OSA at a tertiary sleep 
center using the Compumedics Grael acquisition system 
(Abbotsford, Australia). This study was under the supervision 
of the Human Research Ethics Committees of the Metro South 
Hospital and Health Services, and the University of 
Queensland.  Scoring of the PSG was according to the AASM 
2012 rules [13] by qualified sleep technicians who regularly 
undergo reliability testing. The PSG recorded 12 data channels 
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Figure 1. Study Methods   
including electroencephalography (EEG). The recommended 
recording montage used was F4:M1, C4:M1, and 02:M1.  

Only patients with complete data sets were included. 
Exclusions were made due to missing demographic data (n=7) 
and PVT results (n=5), leaving 190 patients with complete data 
sets. A Sp cohort (SC) was randomly selected from within the 
full 190 patients, leaving a Main Cohort (MC) of n=170. Sleep 
and demographic data were compared between the MC and the 
SC to monitor how closely the SC represented the larger sleep 
population. The methodology for this study is shown in Fig. 1. 

 
B. Psychomotor Vigilance Test  

During the ten-minute PVT, 120 red crosses are displayed 
on a computer screen with random interstimulus intervals 
between 2-10 seconds. Participants were asked to push a 
button when they saw a cross. To create Groups based on PVT 
results, Lapse and MdRT data were extracted from the PVT 
data and standardized to the mean so that:  

𝑍𝑍(∝) =
∝ −𝜇𝜇∝
𝜎𝜎∝

 

where ∝= the number of lapses or the MdRT and μ∝ and 
σ∝ represent the population mean and standard deviation of 
the number of lapses or the MdRT. Four PVT severity 
groups were also established so that: Group 1: Z(∝) < μ∝ − 
σ∝, Group 2: μ(∝)> Z∝ ≥μ ∝ − σ∝, Group 3: μ∝ < Z(∝) ≤ 
μ∝ + σ∝ and Group 4: Z(∝) >μ ∝ + σ∝.  

C. Sleep Blocks 
The sleep period was divided into four Sleep Blocks (SB) 

of Stage N sleep (Fig.1) using the epoch scoring from the PSG. 
The time spent in each SB was recorded.  Each SB consisted 
of a minimum of four epochs of sleep of a defined sleep stage. 
The SB was ended when more than four epochs with different 
sleep staging were scored. The N2F SB was the first SB of 
Stage N2 sleep after sleep onset. Similarly, N3F was the 1st SB 
of Stage N3 sleep. N2M was the Stage N2 SB after the first 
Stage R epoch, or from the middle of sleep if Stage R was 
absent or delayed past the first half of the sleep period. The last 
scored Stage N SB prior to the end of the sleep period (NXL) 
was a mixed Stage N (N1, N2 and N3) SB. All Sp feature 
extraction was done from within these four SBs for each 
subject.  

D. Sleep Spindle Feature Extraction 
The EEG was collected at 1024 samples/second and then 
band–pass filtered between 0.1-35Hz. Sps were detected 
manually across electrodes F4-M1, C3-M2, C4-M2 and O2-
M1 during sleep that was visually identified as free of 
artifacts. A 20 second screen was used to score Sp in 
Profusion 4 (Build 456, Compumedics Ltd, Abbotsford 
Australia) software.  Sp were classified with a minimum 
duration of 0.3sec, minimum amplitude of 10µV and 
frequencies of 11-16Hz [14]. Wave forms with a Frequency 
lower than12Hz were identified as Sp only if they were part 
of a train of at least 2 Sps [15].  

 
We classified Sps as burst or non-burst Sps. Burst Sp had 

a maximum inter-Sp-Interval of 20 seconds [7]. A novel 
measure, the Spindle Burst Index (SBI), was defined as the 
number of burst Sp in a SB as a percentage of the total 
number of Sp in the SB. For each SB we also computed the 
number and density of burst fast SSp (FSP) and slow Sp 
(SSP), and the density of all Sp within the SB. 

E. Model Construction 
We constructed four models using the MATLAB Regression 
Learner and Classification Learner Applications (MATLAB 
R2018b, The Mathworks Inc., Natick MA) to map Sp 
features to i) individual z-Lapse and zMdRT scores, and ii) 
Lapse and MdRT Groups. For the z-score models, predictors 
were chosen based on reduction in the Root Mean Square 
Error (RMSE). For the Group models, predictor selection 
was based on accuracy. The number of predictors was 
limited to four to prevent over fitting. The RMSE, r-squared 
data, Mean Squared Error (MSE) and Mean Adjusted Error 
(MAE) for z-score models and the accuracy, sensitivity, 
specificity, and positive and negative predictive values (for 
Group data) were reported on validation folds after fifty 
repeats of randomised five-fold cross validation.  
 

Models were constructed based on Sp Burst metrics 
(SPBM) and mixed burst and non-burst metrics (SBM). Sp 
characteristics were mapped to zLapse and zMdRT values, 
and to Lapse and MdRT Groups. Algorithms were chosen 
from the nonparametric selections in MATLAB Regression 
Learner Application (for zLapse and zMdRT scores) and the 
Classification Learner Application for Groups. 

COMPARISON OF DEMOGRAPHIC AND SLEEP DATA FOR  THE MAIN COHORT 
AND THE SPNDLE COHORT 

Sleep and 
Demographic 
Variables 

MC 
(n=170) 

 
SC  
(n=20) p 

Age 54.6±13.7 57.0±14.8 0.431 
Gender F:M 62:108 12:8 0.044* 
BMI 36.6±9.2 36.5±7.5 0.847 
ESSa 9.6±5.6 11.4±4.6 0.109 
Sleep Latency 23.2±23.2 22.8±14.4 0.345 
AHIb 32.3±30.3 24.9±23.9 0.276 
Lapses 22.1±27.2 36.9±39.8 0.3 
Median RTc 428±326.0 511.7±195.6 0.200 
a=Epworth Sleepiness Scale,b= Apnea Hypopnea Index, 
c=Reaction Time, *=p<0.05 
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TABLE I.  COMPARISON OF SPINDLE MODELLING VARIABES ACROSS 
THE Z-LAPSE AND Z-MEDIAN GROUPS IN THE SPINDLE COHORT 

Spindle 
Variables  

Lapse Groups(number)/mean±S.D. 
LG2(9)  LG3(5)  LG4(6) p 

Lapses 4.1∓3.0 36.2∓11.1 86.7∓31.8 <.001* 
SBI N2F 90.6±11.2 74.0±25.5 47.6±42.6 0.110 
Time in N3F 24.3±12.7 21.8±16.4 5.7±3.3 0.017* 
B Den SSp N2F 0.6±0.3 1.2±1.1 1.3±1.6 0.851 
nBFSp:nBSSpa 2.3±1.6 2.1±1.4 0.6±0.5 0.023* 
nFSp:nSSp 2.2±1.4 2.0±1.4 0.5±0.2 0.045* 
nBursts N2F 8.4±3.9 5.2±5.7 4.0±4.9 0.104 
n all Sp 156.2±101.6 114.0±79.4 54.8±71.1 0.082 
 MdG2(11) MdG3(6) MdG4(3)  
Median RT 352.5±452.5 475.5±23.2 1168.0±173

 
<.001* 

SBI N2F 92.1±10.5 69.6±21.3 13.3±23.1 0.006* 
Time in N3F 21.9±13.0 17.0±17.0 6.2±4.9 0.141 
B Den SSp N2F 0.8±0.6 1.6±1.5 0.0±0.1 0.042* 
nBFSp:nBSSpa 2.2±1.5 1.5±1.6 0.7±0.6 0.186 
nFSp:nSSp 2.1±1.4 1.5±1.6 0.5±0.1 0.031* 
Sp Density N3F 1.4±1.3 1.3±1.0 0.5±0.5 0.308 
n all Sp 147.5±97.2

 
 

  

109.0±77.8 9.7±9.9 0.026* 
a=number of Burst Fast Sp: Number of Burst slow Sp, *=p<0.05 
 

F. Statistics 
Statistical significance was set at p<0.05. The Kruskal 
Wallis One-way Analysis of Variance compared 
distributions for continuous variables using Dunn’s pairwise 
tests and the Bonferroni correction. The Chi-Square test was 
used for categorical variables. Statistical analysis was done 
in SPSS version 26 (IBM corp., New York, USA). 

III. RESULTS 

After random selection of the SC, there were no significant 
differences for sleep or demographic characteristics between 
the MC and the SC except for gender (p=0.043) (Table 1). 
The SC had a higher number of females with less severe OSA, 
than the MC, but the OSA differences did not reach statistical 
significance. The SC contained 3 Lapse and MdRT Groups. 
There were no subjects in Group1 in either the SC or the MC. 
The SC had a higher number of Lapses and a higher MdRT 
than the MC, but this did not reach statistical significance. 

A. Spindle Features 
There were significant differences between Groups for the 
time spent in N3F, with Lapse Group 4 (LG4) having the 
lowest values. The SBI differed significantly between the  

TABLE II.  MAPPING SPINDLE FEATURES TO Z-LAPSE AND Z-MEDIAN 
REACTION TIMES 

TABLE III.  MAPPING SPINDLE BURST CHARACCTERISTICS TO MEDIAN  
REACTION TIME GROUPS 

 

MdRT Groups (MdRTG2-MdRTG4) and decreased from 
MdRTG2-MdRTG4.  SBI values for each group were highest 
in N2F.  The ratio of all fast: slow Sp decreased significantly 
from Lapse Group 2-4 (LG2-LG4) and MdRTG2-G4. 

B. Modelling Outcomes 
Modelling outcomes mapping Sp features to zLapse and 
zMdRT scores using Exponential Gaussian Process 
Regression are shown in Table 2. All models used the time 
spent in N3F, the N2F SBI and the burst density of Slow Sp 
in N2F. The zMdRT SBM contained the Sp density of all 
Sps in N3F and had the lowest RMSE (0.59, 95% C.I. 0.56-
0.61). The highest r-squared value was in the zLapse SPBM 
which included the SBI NXL (0.75, 95% C.I. 0.73-0.77). 

 
The K Nearest Neighbors algorithm was used to map Sp 

characteristics to the MdRT (Table 3) and Lapse Groups 
(Table 4). The SPBM mapped to the MdRT groups with an 
accuracy of 91.9% (95% C.I. 90.8-93.0%). It had a 
sensitivity of 88.9% (95%C.I. 87.3-90.5) for MdRT Group2 
with the fastest RT, and sensitivity of 94.0% (95% C.I. 90.3-
97.7) for mapping to MdRT Group4 with the slowest RTs, 
indicating that burst Sp metrics are useful for mapping to 
slowing of RTs in an OSA cohort. The best-performed 
Lapse Group model was the SBM (Table 4) with an  

TABLE IV.  MAPPINZ MIXED SPNDLE BURST AND DENSITY METRICS TO 
LAPSE  GROUPS 

SBM 
Fine K-Nearest 
 Neighbours 

Lapse Groups 
%, (95%Confidence Interval) 

Group2 Group3 Group4 
(n=9) (n=5) (n=6) 

Sensitivity 88.9 57.1 62.3 
(88.9-88.9) (54.0-60.2) (58.9-65.8) 

Specificity 91.2 78.7 91.2 
(89.8-92.6) (77.2-80.1) (90.2-92.2) 

Positive 90.8 84.8 85.1 
Predictive Value (90.7-91.0) (83.8-85.9) (84.0-86.3) 
Negative 89.6 46.9 75.8 
Predictive Value (88.2-90.9) (44.8-49.1) (73.8-77.7) 

Accuracy 72.9 
(71.8-74.0) 

SBIf N2Fg; time N3F; Burst Density Slow Sp N2F; n All FSp:All SSp 
 

  RMSEa R-Squared MSEb MAEc 
                   Number (95% Confidence Interval) 
SPBMd zMdRT  0.61 

(0.58-
0.63) 

0.67 
(0.64-0.70) 

0.38 
(0.34-
0.41) 

0.53 
(0.42-
0.44)   

 zL 0.73 
(0.70-
0.77) 

0.75 
(0.73-0.77) 

0.55 
(0.50-
0.61) 

0.55 
(0.52-
0.57)   

SBMe zMdRT 0.59 
(0.56-
0.61) 

0.69 
(0.66-0.72) 

0.35 
(0.32-
0.39) 

0.42 
(0.41-
0.43)   

 zL 0.82 
(0.79-
0.85) 

0.69 
(0.67-0.72) 

0.68 
(0.63-
0.74) 

0.61 
(0.59-
0.63)   

A=Root mean square error, b=Mean squared error, c=Mean absolute 
Error ,d=Spindle Burst Model, e=Mixed Burst/ non-burst model 

 SPBM 
Fine K-Nearest 
Neighbours 
 
  

Median Reaction Time Groups 
%, (95%Confidence Interval) 

MdG2 MdG3 MdG4 

(n=11) (n=6) (n=3) 

Sensitivity 88.9 96.3 94.0 
(87.3-90.5) (93.7-98.9) (90.3-97.7) 

Specificity 98.2 90.0 99.6 
99.6-99.8) (88.6-91.4) (99.2-100.0) 

Positive 88.2 98.5 99.0 
Predictive Value (86.8-89.5) (97.4-99.5) (98.4-99.6) 
Negative 98.7 81.1Ω 98.3 
Predictive Value (97.4-99.5) (79.2z82.z) (96.4-100.0) 
Accuracy 91.9 (90.8-93.0) 

Model: SBI N2F; time N3F; Burst Density SSp N2F; Ratio Burst 
FSp:SSpa 

a=number of Burst Fast Sp: Number of Burst slow Sp. 
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accuracy of 72.9%, (95%C.I. 71.8-74.0). The Sp burst 
features from the N2F SB mapped accurately to changes in 
RT across the three MdRT Groups. Features from the N2F 
SB mapped accurately to changes in RT across the three 
MdRT Groups.    

IV. DISCUSSION 

This study has shown that it is possible to use Sp 
characteristics obtained from overnight diagnostic PSG to 
map to z-scores and to Groups formed from PVT lapse and 
MdRT outcomes in a cohort of patients being tested for 
OSA. Population research has previously used standardized 
data as the basis for comparison of biomedical data across 
different clinical groups and different time periods [16]. The 
highest modelling accuracy in this study was obtained when 
Sp features were mapped to Groups with one or more 
standard deviations in the MdRT between groups, rather 
than to individual z-scores. These methods may form a basis 
within our clinical population to monitor changes between 
groups across time. 
  
  The functional impact of the Burst nature of Sps has been 
largely unexplored. Although runs of Sp with 3-6 sec inter-
spindle intervals have been correlated to manipulations such 
as memory re-cuing during sleep [17], Sp with a 3-6 second 
periodicity were found to be largely absent in both healthy 
controls and patients with OSA across single electrode 
couplings in un-cued nocturnal sleep [1].  In contrast we 
have mapped Sp burst features with a maximal inter-spindle 
interval of 20sec across multiple electrodes to MdRT group 
data. There may be value in investigating the efficacy of 
modelling outcomes using different burst interval 
definitions, and different electrode arrays across different 
periods of sleep for predicting vigilance outcomes.  
 

 The time spent in the N3F SB was significantly lower in 
the L4 Lapse Group, and was incorporated in all of the 
constructed models. Previous work has found an increase in 
lapses in healthy controls after selective interruption of 
Slow-wave activity during recovery sleep using both visual  
[18] and auditory stimuli [19]. Reduced Stage N3 sleep is 
also associated with increased severity of OSA [20]. As 
there are complex interactions between OSA pathology, 
sleep quality and OSA metrics, there is likely to be a 
multifactorial association between altered Sp metrics and 
other sleep-related data. 

 
The highest model accuracy was obtained using Sp burst 

features from the N2F SB to predict zMdRT Group 
membership. Future work could investigate the predictive 
value of different Burst and non-Burst Sp characteristics in 
larger populations that include healthy controls and 
incorporate automatic Sp detection. Extra data to be 
collected in future work could include information about 
educational level, dominant hand, medications and 
neurologic conditions. 
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