
 

 

 

  

Abstract—The quality of the extracted traditional hand-

crafted Electromyogram (EMG) features has been recently 

identified in the literature as a limiting factor prohibiting the 

translation from laboratory to clinical settings. To address this 

limitation, a shift of focus from traditional feature extraction 

methods to deep learning models was witnessed, as the latter can 

learn the best feature representation for the task at hand. 

However, while deep learning models achieve promising results 

based on raw EMG data, their clinical implementation is often 

challenged due to their significantly high computational costs 

(significantly large number of generated models’ parameters 

and a huge amount of data needed for training). This paper is 

focused on combining the simplicity and low computational 

characteristics of traditional feature extraction with the memory 

concepts from Long Short-Term Memory (LSTM) models to 

efficiently extract the spatial-temporal dynamics of the EMG 

signals. The novelty of the proposed method can be summarized 

in a) the memory concept leveraged from deep learning 

structures, capturing short-term temporal dependencies of the 

EMG signals, b) the use of cardinality to generate logical 

combinations of spatially distinct EMG signals and as a feature 

extraction method and 3) low computational costs and the 

enhanced classification performance. The performance of the 

proposed method is validated using three EMG databases 

collected with 1) laboratory hardware (9 transradial amputees 

and 17 intact-limbed), and 2) wearables (22 intact-limed using 

two wearable consumer armbands). In comparison to several 

other well-known methods from the literature, the proposed 

method shows significantly enhanced myoelectric pattern 

recognition performance, with accuracies reaching up to 99%.    

 

1. INTRODUCTION 

The Electromyogram (EMG) signals from the remaining 
muscles after amputation have long been investigated as a 
source of control for powered prosthetics, to give an 
opportunity for people with amputations to live and work in a 
way that was previously difficult [1]. Advanced commercial 
prostheses, employing pattern recognition (PR) technologies 
to revolutionize the way muscles’ bioelectrical activity signals 
are used to control a multifunctional prosthesis, are nowadays 
available. However, despite the success of EMG driven PR-
based prostheses (a.k.a myoelectric prostheses), recent 
literature has pointed out that limitations arise when exporting 
such systems from the laboratory to real-life clinical 
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applications, as it is usually found that the clinical accuracy is 
inferior to that achieved in controlled laboratory environments 
[2]. For real-time applications, any such controller should 
theoretically operate under minimal latencies and memory 
requirements for processing and decision making, all while 
maintaining the accuracy of movement identification. It has 
also been reported that the lack of intuitive control renders 
such a technology to be rejected by amputees given the delays 
and inaccuracies associated with many systems [3]. Hence, 
accuracy and reliability are key points to determine the success 
of such a technology. Several factors contribute to achieving 
high accuracies for controlling a prosthetic arm and ensure its 
reliability including for example training and testing the 
developed algorithms with many datasets, including more 
subjects (intact-limbed and amputees), selecting more 
movements, and recording data under different experimental 
conditions (limb position change, varying contraction force 
efforts, forearm orientations, etc.). To prove our results, we 
implement our algorithm using three main databases of surface 
EMG (sEMG) signals recorded from the forearm: BioPatrec- 
database, 3DC-database, and Forces- database.  

Several traditional EMG feature extraction methods were 
used in the literature, including (but not limited to): the 
waveform length (WL), mean absolute value (MAV), sloop 
sign changes (SSC), number of zero crossings (ZC) [4]; fast 
Fourier transform (FFT) [5], wavelets and wavelet packet 
transform (WPT) [6, 7]; cepstral coefficients (CC), Willison 
amplitude (WAMP) [8]; sample entropy (ENT) [9]; and the 
autoregressive (AR) model parameters [10]. Feature extraction 
and selection was also a focus on a number of studies 
comparing a significant number of features for their suitability 
in this problem [11,12]. This work examined several well-
known feature sets like six-order AR6 model coefficients, WL, 
ZC, Root Mean Square (RMS), and Hjorth time-domain 
(HTD) parameters. Other feature sets considered here were 
Hudgins’s feature set consisting of MAV, MAVS (MAV 
slope), ZC, SSC, and WL [13], Englehart’s set excluding 
MAVS from Hudgins set [14], Hargrove’s set which is 
composed of Hudgins’s set plus AR6 and RMS [15], 
Khushaba’s fusion of time-domain descriptors (fTDD) [16], 
consisting of six features representing the root squared zero-
order moments, root squared fourth and eighth order moments, 
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sparseness, irregularity factor and WL ratio [16], and 
Khushaba’s temporal-spatial descriptor (TSD) method [17]. 

One of the recently suggested and promising features is 
cardinality [18], which is represented by counting the number 
of elements in a set of items, excluding all the similar items 
among the elements in that collection [18,19]. Compared with 
other individual features that are commonly used in the 
literature, cardinality has been shown as one of the features 
that can achieve good accuracy despite variations in sampling 
frequency, window segments, and type and number of classes 
of movements [19], which makes cardinality a major interest 
of further developments.  

Inspired by the earlier reported performance, we aimed to 
extend the work on cardinality by adding two major 
components: 1) a memory component, to overcome the cross-
sectional nature of traditional feature extraction, as inspired by 
the concept of LSTM models [20] and 2) a spatial component, 
by using the cardinality principle between every possible 
combination of two spatially distinct EMG channels to 
consider the synergy between the activities of different 
muscles/sensors. Once the EMG activities in the channel 
combinations are translated into a unique set of new EMG 
values, we then extract three TD features from this 
combination as will be discussed below. 

2. DATA COLLECTION 

The validation of our approach was achieved through three 
EMG databases. The first database (Force-database denoted 
here as D1) was collected from 9 transradial amputees (seven 
traumatic and two congenital), Six movements, including 
different grip and finger movements, were investigated; these 
movements are: 1) Thumb flexion; 2) Index flexion; 3) Fine 
pinch; 4) Tripod grip; 5) Hook grip (hook or snap); 6) 
Spherical grip (power) as in [21]. For each of the six 
movements, three force levels: low, medium, and high, have 
been produced. Five to eight trials were recorded for each force 
level and for each amputee. The second database (BioPatrec-
database denoted here as D2) was collected from 17 hand 
intact people acquired using 8 bipolar electrodes to classify six 
hand and wrist movements [22]; this dataset is made of eleven 
hand/wrist gestures. The Third database (3DC-database 
denoted here as D3) used a wearable sEMG acquisition system 
using ten sEMG recording channels to collect the data for 
eleven hands/wrist gestures [23], as shown in Fig.1. A brief 
detail of all databases is illustrated in Table I. The main reason 
behind using these databases is to provide some level of 
variability to test the effectiveness of the proposed method on 
different experimental conditions. In this work, the EMG 
signals from all sources were filtered using a 4th order 
Butterworth high pass filter (20Hz) to remove movement 
artifacts.  

3. METHODOLOGY 

The methodology followed in this study depends mainly on 

finding the temporal (using the concept of recurrent deep 

learning LSTM method) and spatial dependencies (using the 

concepts of cardinality). These methodologies can be 

summarized as follows: 

A. Cardinality (Getting Special dependencies) 

The cardinality of a collection like A is represented as Card 

(A) or |A|. Accordingly, for two sets of data, the cardinality 

between them is the number of unique values within these two 

sets and denoted as |A ∩ B|. One of the main reasons behind 

using cardinality as a feature is that it is not affected by DC 

offsets that are commonly caused by the mismatch of 

electrode impedance.  

 

Figure.1 The eleven hand/wrist gestures [23]. 

TABLE I: A BRIEF FACTS FOR THE USED DATASET 

 
Sub. 
No. 

Chan. 
No. 

Class.  
No. 

Samp. 

Freq. (Hz) 

Intact/Amp
utees 

D1 9 8 6 2000 
Transradial 
amputees 

D2 17 8 6 2000 
Healthy 
participants 

D3 22 10 11 200 
Intact-
limbed 

 

An overlapping segmentation scheme was utilized to extract 

the features from the recorded EMG channels (assuming NC 

to be the total number of available channels). The first step in 

the analysis is to consider every possible combination of n out 
of NC across the current analysis windows (n = 2, to simplify 

analysis). This will end up with a combination of (NC x NC)-

NC)/2 logical combinations of two channels. Each two 

windows from the spatially distinct EMG channels are then 

concatenated and the number of unique elements is calculated 

(after normalization and rounding to nearest integer). Three 

time-domain features are then extracted per each unique set 

of values, these are: cardinality (the count of the unique 

elements), mean, and the sum of the first differentiation. The 

same features are also calculated from each individual 

channel, ending up with a total number of features (Totfet = 
(NC x NFPC) +((NCxNC)-NC)/2 x NFPC) features, where 

NFPC is the number of features extracted per channel. Once 

these are all calculated, the same procedure is repeated to 

extract the features from a nonlinear version of the original 

signals (schematically shown in Fig.2) and the cosine 

similarity between the two sets is calculated [12] as 

 

               𝑓𝑖 =  
−2𝑎𝑖𝑏𝑖

𝑎𝑖
2+𝑏𝑖

2   where i =1, 2, 3, …Totfet.   (1) 

 

B. Establishing Temporal Dependencies 

The Long Short-Term Memory (LSTM) works on 

processing the previous outputs along with the current inputs, 

i.e., it allows previous information to be processed, with each 

chunk of the neural network [24]. LSTMs are mainly 
designed to overcome the long-term dependency problem and 
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enhance the short-term memory through its cell state. In this 

work, features were extracted using the inspiration of LSTM. 

Where the short-term memory concept is applied after 

applying the process mentioned in section A. In this approach, 

the features extracted from the current windows are 
multiplied by those extracted from a previous window 

(adjacent or non-adjacent), and the results are sigmoid 

mapped to keep the features’ range within acceptable limits. 

This method allows short-term memory to be captured, i.e., 

within-trial/gesture memory component, especially when 

there is a high degree of overlap between adjacent windows 

(further details in or team’s recent work in [12]). The block 

diagram of the proposed method can be demonstrated in 

Fig.3, where blocks A & B are the same as in Fig.2. 

 

 
Figure.2 Block diagram of the proposed feature extraction method for 

each sliding window 
 

 
Figure.3 Block diagram of the proposed feature extraction method  

 

After extracting the feature, dimensionality reduction was 

applied using the Spectral Regression feature projection 
method (SR) [25], which is utilized to map the original feature 

set into a new domain with c−1 features only, with c being the 

number of classes, leading to a reduced computational cost. 

Finally, two classification methods were evaluated, which are 

the traditional Linear Discriminant Analysis (LDA) and 

Support Vector Machines (SVM). As the performance of 

SVM is susceptible to the kernel function parameter γ and the 

regularization parameter C, therefore, the parameters for 
SVM were adjusted and optimized for each dataset.  
 

4. RESULTS AND DISCUSSION 

To show the superior performance of the proposed method, 

it is applied to three different databases, with the classification 

results demonstrated as shown below: 

A. Results of Dataset 1 (Force-database) 

For the transradial amputee dataset, results were computed 
for each of the force levels, and each feature extraction and 
classification method, as shown in Fig.4. Across these results, 
the proposed method significantly outperformed all other 
considered methods from the literature (p < 0.001). 

 

Figure.4 Shows the effectiveness of the proposed method with different 

TD features using LDA classifier for the Force dataset 

 

B. Results of Database 2 (BioPatrec-Database) 

The average classification errors across the 17 participants 
of the BioPatrec database are shown in Fig.5 for different 
feature extraction and different classification methods. For the 
BioPatrec datasets. The SVM classifier performed better in 
comparison with an LDA classifier.  

 

Figure.5 shows the effectiveness of the proposed method with different 

TD features using LDA and SVM classifier for BioPatrec Dataset 

C. Results of Database 3 (3DC-Database) 

Fig.6 shows the averaged classification error results across 
all the 22 subjects of the EMG 3DC database. In this figure, 
the proposed method is compared with other well-known 
features and feature sets using SVM and LDA classifiers.  
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5. CONCLUSION 

In this paper, we proposed a novel approach to utilize 
cardinality to generate a logical combination of spatially 
distinct EMG channels and combined that with the concept of 
memory as inspired by LSTM. The benefits of the proposed 
method included the simplicity by which the method is 
implemented based on time-domain features without any 
complicated processes and the achieved low levels of 
classification errors based on testing with EMG signals 
acquired from different databases. This study aims to reduce 
the gap between academia and industry/clinical 
implementation by providing reliable performance that 
competes with state-of-the-art deep learning models. We 
believe that there is a great potential for this method to enhance 
the performance of feature extraction by changing some 
parameters, such as the selected nth previous window, and use 
different TD features. We are further developing this method 
and carrying on real-time performance tests to generalize the 
outcomes. 

Figure.6 shows the effectiveness of the proposed method with different TD 
features using LDA and SVM classifier for 3DC dataset 
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