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Abstract— Cardiac Auscultation, an integral part of the
physical examination of a patient, is essential for early diagnosis
of cardiovascular diseases (CVDs). The ability to accurately
diagnose the heart sounds requires experience and expertise,
which is lacking in doctors in the early years of clinical practice.
Thus, there is a need for an automatic diagnostic tool that would
aid medical practitioners with their diagnosis. We propose
novel hybrid architectures for classification of unsegmented
heart sounds to normal and abnormal classes. We propose two
methods, with and without the conventional feature extraction
step in the classification pipeline. We demonstrate that the F
score using the approach with conventional feature extraction
is 1.25 (absolute) more than using a baseline implementation
on the Physionet dataset. We also introduce a mechanism to
tag predictions as unsure and compare results with a varying
threshold.

I. INTRODUCTION

Non-communicable Disorders (NCDs) kill 41 million peo-
ple every year. Cardiovascular Diseases (CVDs) are one of
the leading causes of death in the world and account for
most NCD deaths. There was an estimated 422.7 million
cases of CVDs globally and 17.92 million deaths due to
CVDs in 2015. Cardiac auscultation using stethoscope still
remains the central tool for diagnosis of valvular and other
structural heart abnormalities. It may reveal many pathologic
cardiac conditions including arrhythmias, valve diseases and
heart failure. Heart sounds provide important initial clues in
disease evaluation, serve as a guide for further diagnostic
examination, and, thus, play an important role in the early
detection for CVDs. As opposed to an experienced Car-
diologist, Pulmonologist (specialists), many fresh medical
students, graduates and allied healthcare staff face difficulties
in hearing and identifying the normal/abnormal characteristic
sounds leading to a serious concern of potential missed
diagnosis and/or early detection. Another persistent issue
is the low doctor patient ratios in low and middle income
countries. In such low resource settings, a patient’s first point
of contact in majority of the cases is at a primary care
or community clinic manned by a nurse or a primary care
physician. It requires 2-7 years of training and experience
(learning curve) before a newly trained healthcare graduate
can identify clinically significant auscultatory sounds and
become proficient in identifying normal/abnormal heart and
lung sounds. Therefore, an automated assistive detection
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technology is needed to help medical professionals make
informed decisions and detect abnormalities at the early
screening stage.

The human cardiac cycle consists of two phases- systole
and diastole. These phases are defined by the two main
fundamental heard sounds S1 and S2 (‘lub’ and ‘dub’). Heart
murmurs, caused due to turbulent blood flow in or near the
heart, can either be harmless or abnormal. Based on the
presence, position and extent of a murmur in either of the
phases of the cardiac cycle, it can be classified into pan,
mid or late systolic and diastolic murmurs. Over the years,
a lot of developmental work has been going on with respect
to classification and segmentation of heart sounds involving
latest machine learning and signal processing techniques.
Heart sounds can be classified into two classes- normal and
abnormal. The basic workflow of the two-class heart sound
classification includes 1) Pre-processing 2) Segmentation 3)
Feature Extraction 4) Classification.

Pre-processing includes steps like filtering, denoising, en-
hancement, etc. Segmentation acts as an essential step in
the automatic analysis of phonocardiogram (PCG), used to
extract the main heart sound states- S1, systole, S2, dias-
tole. For this purpose, various hand-crafted spectro-temporal
features [1] are extracted. Extraction of such elaborate hand
crafted features not only requires expert domain knowledge
but also requires manual labour in many cases. Classification
pipeline involves segmentation which needs to be robust to
real world scenarios. This, in turn, requires a large number of
annotations from medical experts, which is, however, cum-
bersome and time-consuming. Previous works showcased the
extensive use of segmentation and a wide array of feature
extraction techniques to perform the task at hand. In [2], the
authors proposed a technique using Markov chain analysis
to model temporal changes in the signal to extract relevant
features along with other spectral and statistical features.
Rubin et al. [3] converted the audio waveforms into time-
frequency domain spectrograms that are later fed into a
deep neural network to perform classification. In [4], authors
extracted 124 time-frequency features and used an ensemble
of Adaboost and CNN based network to classify the heart
sounds. This was the top scorer for the Physionet challenge,
with an overall score of 86.05% (average of sensitivity
and specificity that are 94.24% and 77.81% respectively).
Classification using features extracted from unsegmented
heart sounds eliminates the time taken and computational
overhead for a separate segmentation task and provides
effective results. Many of the earlier studies [5, 6, 7] have
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Fig. 1. The block diagram of the proposed heart sound classification
mechanism.

used unsegemented input data to extract various features like
wavelet entropy, hilbert’s envelope, power spectral density,
scalograms etc. Various classifiers like k nearest neighbour
(kNN) and deep neural networks have also been used.

We aim to perform binary classification of heart sounds
into normal and abnormal by eliminating the segmentation
step, thereby reducing the complexity and computational
overhead of performing segmentation. Our contributions are
two-fold. First, we propose novel architectures for unseg-
mented heart sound classification comprising both convo-
lutional neural network (CNN) layers and long short-term
memory (LSTM) [10] layers. The CNN layers learn the con-
textual local information, thereby acting as filters, whereas
the LSTM layers extract the the temporal information. Sec-
ond, we provide a comparative analysis of utilizing feature
engineering and extraction in the modeling pipeline. We
showcase the performance changes while using a hybrid net-
work for both extracted mel-frequency cepstral coefficients
(MFCCs) features and raw time domain waveform input.
We also introduce a post-processing step that evaluates the
confidence of classifying a particular audio file as normal
or abnormal. We use a thresholding mechanism for finding
unsure predictions thereby reducing the number of misclas-
sifications and boosting the results.

II. DATASET

A. Dataset Description

For this study, a publicly available heart sound dataset,
Physionet[8], was used. It consists of 3240 heart audio files
of varying length ranging from about 5 seconds to 122

seconds. The dataset is collected by various teams using
heterogeneous sensing equipment from multiple countries
under different clinical and nonclinical (e.g., home visits)
environmental conditions. We can thereby notice both noisy
and clean heart sound recordings. The dataset contains a
binary annotation of normal vs abnormal. The recordings
were collected both from healthy subjects and patients with a
variety of heart conditions, especially coronary artery disease
and heart valve disease. The subjects were from different age
groups including children, adults and elderly. The dataset
consists of 665 abnormal and 2575 abnormal recordings.
The dataset comprises 6 different sets, namely a to f, which
vary with respect to the recording instrument, environment,
pathalogical conditions, recording positions etc. All the audio
files were sampled to 2000Hz. Bandpass Butterworth filtering
of the frequency range, 20Hz to 500Hz was employed on
each audio file. This was done to remove both high-frequency
noise and unwanted low-frequency artifacts. To overcome the
differing durations of the heart sound recordings, random
chunks of constant sizes were extracted and used as input to
the classifiers.

III. METHODOLOGY
A. Proposed Architectures

Heart sounds are a combination of quasi-periodic fun-
damental heart sounds like S1 and S2, psuedo-periodic
murmurs and other noises. Due to the overlap of frequency
ranges of these different components, it is difficult to identify
them in the time or frequency domain alone. For physiolog-
ical time series data like heart sounds, we need to extract
the information with respect to the chronological changes
in the signal as well as its repeating nature which depends
largely on historical information. Thus, analysis in the time-
frequency domain is suitable for heart sound classification.
We thereby propose a combination of both CNN and LSTM
layers. CNN layers are used to extract local correlations and
frequency characteristics from the input heart sound data
and LSTM layers help us extract long term dependencies
from the learned local features. The combination of layers
is proposed with the aim that the network exploits temporal
information better, which is essential for heart sound classifi-
cation. A conventional model pipeline for audio classification
involves feature extraction and engineering as a prerequi-
site, usually extracting spectrograms, MFCCs and chroma
features. In this work, we aim to provide a comparative
study between the conventional modelling approach with
hand-crafted features, i.e., MFCC, and a network that takes
time-domain waveforms as inputs, thereby eliminating the
feature engineering step. For the latter, we aim to provide a
hybrid neural network that attempts to jointly perform feature
extraction as well as classification instead of separating the
two tasks. Fig. 1 shows the block diagram of the proposed
methodology for heart sound classification.

1) MFCC Network: The model given by Table I is a
hybrid CNN and LSTM network with 2 convolutional layers,
a max pool layer and two LSTM layers followed by a
series of time distributed layers. The 1D convolutional layers

714



(799 x 13)
Mel-frequency Cepstral Coefficients Features

1-D CNN 5 x 1 @64, ReLU
Max-Pooling 5 x 1, Dropout 0.4

1-D CNN 5 x 1 @64, ReLU
LSTM @ 64

LSTM @ 32, Dropout 0.3
Time Distributed Dense @ 64, ReLU
Time Distributed Dense @ 32, ReLU
Time Distributed Dense @ 16, ReLU
Time Distributed Dense @ 8, ReLU

Flatten
Dense @ 2, softmax

TABLE I
TOPOLOGY OF MFCC NETWORK

(20000,1)
10 sec Raw Audio Chunk

1-D CNN 30 x 1 stride 5 @32, ReLU
1-D CNN 5 X 1 @32, ReLU, Dropout 0.3, BN

Max-Pooling 2 x 1 stride 2
1-D CNN 5 X 1 @64, ReLU, Dropout 0.3, BN

Max-Pooling 2 x 1 stride 2
1-D CNN 5 X 1 @64, ReLU, Dropout 0.3, BN

Max-Pooling 2 x 1 stride 2
1-D CNN 5 X 1 @128, ReLU, Dropout 0.3, BN

Max-Pooling 2 x 1 stride 2
LSTM @ 128
LSTM @ 64

LSTM @ 32, Dropout 0.4
Time Distributed Dense @ 32, ReLU
Time Distributed Dense @ 16, ReLU
Time Distributed Dense @ 8, ReLU

Flatten
Dense @ 2, softmax

TABLE II
TOPOLOGY OF FEATURE EXTRACTION NETWORK

have a kernel size of 5. The pool size for the max pooling
layer is also 5. A dropout regularizer is introduced to avoid
overfitting. Rectified Linear Unit (ReLU) activation is used
for all the CNN layers as well as the fully connected layers.
The last fully connected layer utilizes a softmax activation
to obtain class probabilities.

2) Feature Extraction Network: Instead of using specific
hand-crafted features to train the neural network, we exper-
imented with raw data as the input with the aim to attain
a network that would inherently learn complex high-level
and relevant features from the raw audio inputs. Table II
explains the architecture of the model. A 10 second raw
audio chunk is the input to this network. We experimented
with various kernel sizes for the first CNN layer from 10 to

40 with an increment of 10. A repeating block consisting of
a 1D CNN layer with kernel size 5 and a max pool layer
for dimensionality reduction with pool size of 2 and stride
of 2 is considered. Batch Normalization and Dropout are
introduced in each block. The output of the fourth block
is reshaped to 150 × 128, after which three LSTM layers
and three time distributed dense layers are used. All CNN
and fully connected layers use a ReLU activation function
except the last dense layer where we use a softmax activation
function. The initial weights of the convolutional layers are
set using Xavier initialization [2]. The bias terms are set to
zero.

IV. EXPERIMENTS & RESULTS
A. Experimental Setup

That dataset considered in this work consists of recordings
of varying durations. Hence, chunks of constant sizes were
extracted. Experiments were done with chunk sizes from 2s
to 10s in increments of 2s. The larger chunk sizes, namely,
8s and 10s, were found to be optimal for the MFCC network
and the feature extraction network, respectively. The smaller
chunk sizes do not encapsulate enough data for extracting
cues specific to abnormality. The dataset consists of audio
files with varying durations, with set b having recordings
only upto 8 seconds long. To maintain a fixed duration
of audio files to train and evaluate all the models, we
considered audio files greater than 10s. Thus, among the
3240 audio files, 2578 files are considered. The dataset was
split three ways- training, validation and testing. The training
set consisted of 2087 files with 262 abnormal and 1825
normal files. The validation set comprised 252 files, of which
136 were abnormal and 116 were normal. Finally the test set
had 239 files with 123 normal and 116 abnormal files. The
split was in terms of audio files as a whole and not just with
respect to chunks to avoid overlap among train, validation
and test sets. From the training set, 30000 random chunks
with almost an equal number of normal and abnormal cases
were considered. This was done to avoid any prevalence to
the majority (normal) class due to data imbalance. A total
of 6000 chunks were extracted separately from validation
and test sets with an equal number representation from both
classes.

For the MFCC network, 8 second chunks were considered.
A 25 ms window size with a step size of 10 ms was used, on
which a fast Fourier transform of size 64 was performed. The
power spectrum is passed through Mel-scale 26 filterbank
channels. We then decorrelated the filter bank energies by
applying a Discrete Cosine Transform (DCT), and retained
the first 13 mel-frequency cepstral coefficients.

For the feature extraction network, we extracted 10 second
chunks randomly from the training set. We experimented
with various kernel sizes for the first layer of the network.
By keeping all the other parameters fixed, we trained models
with kernel sizes from 10 to 40 with an increment of 10.
We noticed an increase in accuracies as we increased the
kernel size, but a slight decrease with a size of 40. The
chunk level accuracies on the validation set were 80.43%,
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Model Accuracy Specificity Sensitivity F1 Score

C. Potes et.al.[4] 91.60 90.52 92.68 91.94
MFCC Network 93.2 89.43 96.85 93.187

Feature Extraction Network 91.63 88.79 94.31 91.62

TABLE III
COMPARISON OF RESULTS OBTAINED BY PROPOSED ARCHITECTURES AND BASELINE

Set MFCC Network Feature Extraction C. Potes et.al.[4]
Confusion Matrix F1 Score Confusion Matrix F1 Score Confusion Matrix F1 Score

Set a [[ 1 5] [ 4 67]] 87.82 [[ 1 5] [ 6 65]] 86.21 [[ 3 3] [ 8 63]] 87.55
Set c [[0 0] [0 7]] 100 [[0 0] [0 7]] 100 [[0 0] [0 7]] 100
Set d [[0 2] [0 4]] 53.33 [[0 2] [0 4]] 53.33 [[0 2] [0 4]] 53.33
Set e [[103 3] [ 0 36]] 97.91 [[101 5] [ 0 36]] 96.55 [[102 4] [ 1 35]] 96.52
Set f [[1 1] [0 5]] 83.98 [[1 1] [1 4]] 71.43 [[0 2] [0 5]] 59.52

TABLE IV
SET WISE CLASSIFICATION RESULTS

Threshold No. of files C. Potes et.al.[4] MFCC Network
Eliminated Accuracy F1 Score Accuracy F1 Score

0.25 13 93.35 93.51 94.51 94.51
0.20 11 92.96 93.16 94.56 94.55
0.15 9 93.03 93.22 94.19 94.18
0.10 7 92.66 92.89 94.24 94.23

TABLE V
RESULTS OBTAINED FOR MFCC NETWORK AND BASELINE (WITH THRESHOLD)

Threshold No. of files C. Potes et.al.[4] Feature Extraction Network
Eliminated Accuracy F1 Score Accuracy F1 Score

0.25 23 94.89 95.07 95.37 95.36
0.20 21 94.02 94.22 94.50 94.49
0.15 16 94.16 94.32 93.72 93.71
0.10 13 93.35 93.51 92.92 92.91

TABLE VI
RESULTS OBTAINED FOR FEATURE EXTRACTION NETWORK BASELINE (WITH THRESHOLD)

89.33%, 90.87% and 89.18% for kernel sizes 10, 20, 30
and 40 respectively. Hence, the first 1D CNN layer in the
proposed network has a filter size of 30 and a stride of 5.
The first layer has a larger filter size in comparison to the
others so as to have a global view of the audio raw data and
extract the spectral features over time. We used normalized
raw audio data for the feature extraction network and did not
perform any feature engineering beforehand.

The categorical cross entropy function is used to train both
the models. The objective function of both the networks are
optimized with the Adam optimizer [20] with a learning rate
of 0.001, β1 of 0.9, β2 of 0.999, ε of 1e-07 and a decay
of 0.004. A batch size of 64 was used for both training and
validation. Training was done for 50 epochs with an early
stopping criteria on the validation loss with a patience of 5.

B. Results & Discussion

In our experiments, we trained 2 different hybrid models
with inputs- MFCC features and raw audio input, respec-
tively. We have used the pretrained model, proposed by

C. Potes [8] for the heart sound classification task on the
same corpus, as the baseline model. We haven’t considered
the group of 300 files set aside as validation set in the
Physionet challenge. Our test dataset comprises randomly
selected audio files from the entire Physionet dataset. This
gives the baseline model an advantage in the sense that the
recordings in test set used in this work may already been used
for training the baseline model. The proposed models were
trained and tested on chunks of audio files. The predictions
for the entire audio files were aggregated through majority
voting over individual chunks. The results for our proposed
approaches and the baseline are using reported in Table
III. The results are reported using four evaluation metrics-
accuracy, sensitivity, specificity and F1 score.

The proposed MFCC network performs better than the
baseline model. We also notice that both the MFCC and
feature extraction network have high sensitivity (correctly
identifying the abnormal patient) scores, which is clinically
an important feature to have in such a critical application.
We also observe that the specificity values of the proposed
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networks are lower than the baseline, which signifies that
there are more false positives.

To form the test dataset, we have considered files from
each set in the same ratio as present in the original entire
dataset. Since, each set in the dataset represents the heart
sound files collected from various types of environments and
stethescopes, we have evaluated the set-specific performance
for all the three models (Table IV). We notice that the MFCC
model performs better or on par with the baseline model in
all the sets. The feature extraction model on the other hand
performs better than the baseline for sets e and f, equally
well for c and d and has a lower performance for set a.

We introduce a thresholding mechanism to tag certain
predictions for audio files as unsure. The posterior class
probabilities from the last softmax layer are considered for
all the chunks per audio file. Based on the predictions
for each chunk, we collect the list of probabilities for the
chunks with abnormal and normal predictions separately.
The median normal and abnormal probabilities are found
from the collected list of probabilities. We find the relative
change between the two median values, which we assign as
a grade to each audio file prediction. This grade signifies
how sure or unsure the classifier is about the prediction
of the model. We vary a threshold from 0.1 to 0.25 in
intervals of 0.05. If the grading for a particular audio file
is lower than the threshold, its tagged as “unsure” and
eliminated for evaluation. The scores with thresholding are
reported in Table V and VI. We see an improvement in
the performance over the baseline for both the networks.
There is a steady increase in both accuracy and F1 score
as we increase the threshold, especially in the case of the
feature extraction model. This shows that the audio files
that are marked as unsure are indeed the ones misclassified,
resulting an improved result. The predictions made by the
model done with a low confidence level (grading) are the
ones eliminated by the thresholding mechanism. Since there
is a rise in the performance, it suggests that many of the
wrong classifications are with a lower confidence. With a
threshold of 0.25, we see that both the networks perform
better than the baseline model.

V. CONCLUSIONS

In this work, we propose two novel hybrid networks for
unsegmented heart sound classification with and without a
feature engineering step. We provide a comparative study
between the proposed approaches and a baseline model.
The MFCC network results in a sensitivity of 97.478%,
accuracy of 94.51% and an F1 score of 94.509%, which
are better than those using the baseline model. The feature
extraction model performs better than the baseline model as
well. With the proposed thresholding mechanism to detect
“unsure” cases, the feature extraction model performs the
best among the three at a threshold of 0.25 resulting in
an accuracy of 95.37% and an F1 score of 95.36%. Our
proposed method, feature extraction model, thereby provides
an approach to classify abnormal and normal heart sounds
effectively without the overhead of two intermediate steps-

segmentation and feature extraction. This not only reduces
the time taken and computational overhead but also does not
require expert knowledge which would have been essential
for extensive feature engineering.
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