
  

1 

Abstract—There is evidence that cochlear MR signal intensity 

may be useful in prognosticating the risk of hearing loss after 

middle cranial fossa (MCF) resection of acoustic neuroma (AN), 

but the manual segmentation of this structure is difficult and 

prone to error. This hampers both large-scale retrospective 

studies and routine clinical use of this information. To address 

this issue, we present a fully automatic method that permits the 

segmentation of the intra-cochlear anatomy in MR images, 

which uses a weighted active shape model we have developed and 

validated to segment the intra-cochlear anatomy in CT images. 

We take advantage of a dataset for which both CT and MR 

images are available to validate our method on 132 ears in 66 

high-resolution T2-weighted MR images. Using the CT 

segmentation as ground truth, we achieve a mean Dice (DSC) 

value of 0.81 and 0.79 for the scala tympani (ST) and the scala 

vestibuli (SV), which are the two main intracochlear structures.  

 

Clinical Relevance— The proposed method is accurate and 

fully automated for MR image segmentation. It can be used to 

support large retrospective studies that explore relations 

between MR signal in preoperative images and outcomes. It can 

also facilitate the routine and clinical use of this information.  

I. INTRODUCTION 

The cochlea is an essential part of the human inner ear that 
is responsible for hearing. It is a spiral-shaped bony structure 
that contains three cavities: the scala vestibuli (ST), the scala 
tympani (SV), and the scala media (SM). The ST and the SV 
are filled with perilymph. They are separated by the osseous 
spiral lamina and meet at the helicotrema, which is the 
cochlear apex. The SM is located between the ST and the SV 
and separated by the basilar membrane and Reissner’s 
membrane, respectively. It only occupies a small portion of the 
cochlea and is filled with endolymph. 

Because the cochlea is a fluid-filled structure surrounded 
by bone, MR and CT images provide complementary 
information. In CT images, the surrounding bone is visible 
while in the MR images it is the intracochlear fluid that 
produces the signal [1], [2]. We have developed and evaluated 
automated methods for the segmentation of all inner structures 
in CT images and we have applied them to the segmentation 
of images acquired before and after cochlear implant 
procedures [3], [4]. Here, we evaluate these methods for the 
segmentation of T2-weighted MR images.  

Segmentation of MR images is important because recently 
it has been shown that cochlear MR signal intensity has a clear 
relationship with hearing loss in untreated acoustic neuroma 
(AN) patients [5], [6] and predicts hearing outcomes after 
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microsurgical resection [7] and stereotactic radiosurgery [8]. 
The biomolecular processes underlying degraded cochlear T2 
signal remain unclear, but it is thought that they reflect 
increased protein concentration in the cochlear fluids [9], 
which has been observed in perilymph samples from cochleae 
of ears affected by AN [10]. Whether cochlear MR signal 
intensity at the time of AN diagnosis can predict long-term 
hearing outcomes in patients with untreated AN remains 
unknown, and it is unclear whether cochlear MR signal 
intensity precedes, coincides with, or follows observed 
deterioration in hearing over time.  

Automated methods would permit large-scale 
retrospective studies and routine computation of these 
quantities, thus potentially facilitating prognostication of 
hearing outcomes in AN. Cochlear MR signal is also used to 
detect cochlear obliteration after AN surgery to evaluate 
patients for subsequent cochlear implantation [11], [12], [13]. 
Moreover, MR images can serve as a radiation-free alternative 
to preoperative CT images for planning cochlear implantation 
surgeries.  

We note that previous work addressing the segmentation 
of the inner ear in MR images does not separate the 
intracochlear anatomy (ICA) from the entire labyrinth. Recent 
work on the topic includes Zhu et al. [14] who segment the 
labyrinth in MR images using level sets and a statistical shape 
model as prior and Vaidyanathan et al. [15] who develop a 3D 
U-Net-based method to segment the labyrinth. Segmentation 
of the ICA is however necessary to conduct studies that relate 
cochlear signal to outcomes and to the best of our knowledge 
this has not been reported.  

II. METHODS 

The method we propose for the segmentation of the ICA in 

MR images is adapted from our previously developed 

weighted active shape model (wASM) method developed to 

segment the same structures in CT images [4]. We modify this 

method as discussed in the next following subsections to 

make it applicable to the T2-weighted images included in this 

study.  

A. Shape Model Creation 

Briefly, more details can be found in [4], we use a series of 
microCT image volumes (a typical isotropic voxel dimension 
of 0.036 mm) in which the intracochlear anatomy is visible to 
build the model. The ST and SV are manually delineated in 
each of the microCT image volumes to create a surface for 
each structure while maintaining point-to-point 
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correspondence between volumes. The covariance matrix of 
the vertices is created and its eigenvectors are computed as 
proposed by Cootes et al. [16] to produce the eigenmodes of 
deformation.  

 B. Segmentation Using the Weighted Active Shape Model 

After the shape model is built, the segmentation can be 

performed by 1) placing the initial shape in the target image, 

i.e., the image to be segmented; 2) iteratively fitting the 

wASM to the target image; 3) after the fitting converges, use 

the final shape as the segmentation result. The whole process 

is fully automatic, and we detail it in the following 

subsections. 

 1) Initialization: The aim of initialization is to localize the 

cochlea and place initial model points in the target image, 

which is done by registering an MR atlas image to the target 

image. Without loss of generality, we assume that the cochlea 

to be segmented is in the left ear. If it is in the right, we begin 

the process by mirroring the target image. The MR atlas 

image is acquired with a FIESTA sequence on a 3 T scanner, 

with voxel size 0.3125 mm × 0.3125 mm × 0.4 mm. To obtain 

the intracochlear anatomy model points in this MR atlas, we 

first perform the wASM segmentation on its corresponding 

CT image using the method in [4], then align the CT and MR 

images with a rigid-body registration, and finally project the 

model points from the CT volume to the MR atlas image.  

The registration process between the atlas image and the 

target image consists of an affine [17] followed by a nonrigid 

registration [18]. Because all the high-resolution T2-weighted 

images (including the atlas image, see Fig. 1) were obtained 

with an acquisition protocol that covers only a small part of 

the head in the superior-inferior direction (usually less than 

30mm), we follow a four-step process to improve 

convergence and registration accuracy in the cochlear region. 

We first register the whole images and then three regions of 

interest (ROIs) that are empirically chosen around the cochlea 

and have enough content to permit registration. We call 

ROI#1, ROI#2, and ROI#3 the three large- to small-sized 

ROIs shown in Figure 1. ROI#1 has a size of 65 mm × 107 

mm × 28 mm and is chosen to cover the left-half of the brain. 

ROI#2 contains the whole labyrinth and the inner auditory 

canal of the left ear. The strong T2-weighted signals of the 

perilymph, endolymph, and cerebrospinal fluid make it easy 

to distinguish from the surrounding non-fluid anatomy. 

ROI#3 is smaller than ROI#2 but still covers the cochlea. It is 

selected to produce a very accurate registration of the cochlea. 

After the above affine transformations are computed, a 

nonrigid registration is performed between the cochlear ROIs 

(ROI#3) of the atlas image and the target image. The position 

of the initial model points on the target image can then be 

obtained by projecting the points from the atlas image using a 

concatenation of the affine and nonrigid transformations. 

Finally, the shape model is fitted to the initial point-set in a 

weighted-least-square sense (see the following section for the 

detail of the fitting process) to initialize the iterative search. 

2) Iterative search: Following the wASM approach put 

forth in [4], the model starts from a set of initial model points, 

and the optimal solution is computed in the target image 

iteratively until the shape converges. Two sets of model 

points were pre-defined in the wASM approach proposed to 

segment CT images: “edge” points and “nonedge” points. The 

edge points are located on the cochlear external walls and 

have strong image gradients. The nonedge points are the 

remaining points without salient image features. They were 

treated differently in the candidate point adjustment step and 

given different weights (1 for edge points and 0.01 for 

nonedge points) in the wASM fitting process. For the MR 

images used in this study (i.e., high-resolution T2-weighted 

MR images), although the image contrast is provided by the 

fluid signal, the points located close to the cochlear external 

walls have strong image gradients. An example of registered 

CT and MR images showing the cochlea is shown in Fig. 2. 

Also, note that even though the separation between the ST and 

the SV within the cochlea can be discernable in high-

resolution T2-weighted MR images [19], we observe that the 

image gradients at these locations are very weak compared to 

the cochlear external walls and sometimes even nonexistent. 

As a result, we followed the approach described in [3] and 

used the same model point subsets and weights to fit the ASM 

to the images. 

Specifically, at each iteration, every model point 𝑦⃗𝑖 from 

the last wASM fitting is adjusted to its new candidate 

position. If 𝑦⃗𝑖 is an edge point, a search is performed along 

the surface normal of that point. The adjusted candidate point 

𝑦⃗𝑖
′

 is chosen to be the point with the largest gradient 

magnitude along the surface normal over the range of -1 mm 

to 1 mm from 𝑦⃗𝑖 . If 𝑦⃗𝑖  is a nonedge point, then its initial 

position, which is the position of this corresponding point 

projected from the atlas image using the initial registration 

transformation, is used as the new candidate point 𝑦⃗𝑖
′
. The 

next step within this iteration is to fit the shape model to the 

candidate points in the weighted-least-squares sense. A 7 

degree-of-freedom weighted point registration between the 

candidate shape and the mean shape 𝑣̅ is performed to get the 

transformation 𝑇. The residuals are computed as 

 
Figure 1.  The ROIs (shown in yellow) used to register the atlas to other 

volumes. Axial view (left), coronal view (top right), and sagittal view (bottom 

right). 

 
Figure 2.  The CT image (left) and its corresponding T2-weighted MR image 

(right). The red contour shows the ST segmentation, and the blue contour 

shows the SV segmentation. 
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𝑑 = 𝑇(𝑦⃗′) − 𝑣̅. (1) 

The weighted-least-square fit is solved as 

𝑏⃗⃗ = (𝑈𝑇𝑊𝑇𝑊𝑈)−1𝑈𝑇𝑊𝑇𝑊𝑑, (2) 

where 𝑈  is the matrix of eigenvectors, 𝑊  is the diagonal 

matrix point weights. The coefficient 𝑏⃗⃗ is constrained such 

that the Mahalanobis distance between the fitted shape and 

the mean shape is not greater than 3, i.e., 

√∑
𝑏𝑗
2

𝜆𝑗

𝑁−1

𝑗=1
≤ 3. (3) 

The estimated shape after this wASM fitting is then given by 

𝑦⃗ = 𝑇−1(𝑣̅ + 𝑈𝑏⃗⃗). (4) 

The process of candidate point searching and wASM fitting is 

iterated until convergence, and the final shape is the 

segmentation result. 

C. Validation 

 Because our previously developed wASM method to 

segment the ICA in CT images has been applied to various 

clinical applications and shown to be robust and accurate [3], 

[4], [20], [21], [22] and because contouring the cochlea in 132 

ears would be impractical, we utilize the wASM method to 

create the ground truth. Specifically, we first segment the 

paired CT and MR images individually (note that the wASM 

methods in both the CT and MR share the same shape model), 

then rigidly register the CT image to the MR image using the 

same mutual information-based registration technique as in 

Section II.B. Finally, we project the CT segmentation result 

onto the MR image to provide the ground truth. Dice 

similarity coefficient (DSC) [23] and the average surface 

distance (ASD) are calculated between the wASM 

segmentation of the MR images and the ground truth. For 

DSC, which measures the volumetric overlap, we denote the 

binary mask of each segmented ICA structures in CT and MR 

images 𝐵CT and 𝐵𝑀𝑅 . |𝑋| represents the number of voxels in 

the binary mask 𝑋. DSC is computed as 

𝐷𝑆𝐶(𝐵MR, 𝐵CT) = 2
|𝐵MR∩𝐵CT|

|𝐵MR| + |𝐵CT|
. (5) 

For ASD, which measures the average symmetric distance 

between the surface meshes, we define 𝑀𝐶𝑇 as the segmented 

surface mesh in the CT image and 𝑀𝑀𝑅  as the segmented 

mesh in the MR image. The ASD is then computed as 

𝐴𝑆𝐷(𝑀MR,𝑀CT) =
𝐷(𝑀MR, 𝑀CT) + 𝐷(𝑀CT, 𝑀MR)

2
, (6) 

where 𝐷(𝑀MR, 𝑀CT) is the average distance from every point 

on 𝑀MR to the surface of 𝑀CT and vice versa. 
 The evaluation using DSC and ASD requires an accurate 
registration between the paired CT and MR images, but we 
visually observed that small registration errors can remain 
after automated registration. To factor this error out, we obtain 
the rigid transformation between the CT and MR images by 
performing a point-based registration between the point-sets of 
the CT wASM result and the MR wASM result. We 
subsequently calculate the DSC and ASD between the 
transformed CT segmentation and the MR segmentation. We 
consider the evaluation results obtained in this way to be the 
lower bound because this registration process minimizes the 
point-to-point distance between the two segmentations (point-
sets) before calculating the evaluation metrics. 

III. EXPERIMENTS AND RESULTS 

A. Imaging Data  

We retrospectively collected preoperative images of 66 
cochlear implant recipients treated at the Vanderbilt 
University Medical Center. Each patient had undergone 
preoperative CT and MR imaging of the temporal bone. The 
CT images were acquired with a Revolution EVO (GE 
Healthcare) scanner. For these images, a typical voxel 
dimension is 0.47 mm × 0.47 mm × 0.1 mm. The MR images 
were acquired with 3 T MR scanners from different vendors 
(GE Healthcare, Philips Healthcare, and Siemens Healthcare). 
A number of high-resolution T2-weighted MR sequences, 
including FIESTA, bFFE, CISS, DRIVE, SPACE were used 
to scan the patients and were included in the study. Images 
acquired with the FIESTA sequence made up 82% of the MR 
images. For these, a typical voxel dimension is 0.3125 mm × 
0.3125 mm × 0.4 mm. 

B. Results 

The proposed segmentation method is tested on 132 ears of 
66 subjects. The registration and wASM segmentation for each 
ear takes about 2 minutes. The process is fully automated but 
failed for 12/132 ears. These cases required a manual 
alignment between the atlas MR image and the target MR 
image to localize the cochlea before the wASM segmentation 
because of imaging artifacts or pathologies that affected the 
registration process.  

Fig. 3 shows DSC and ASD of the ST and the SV for the 
132 cochleae. Metrics with “LB” (lower bound) indicate that 
the evaluation is performed after the point registration. We 
report mean DSC for the ST and the SV equal to 0.81 and 0.79, 
respectively. The mean ASD for the ST and the SV are both 
0.11 mm, which is far smaller than the typical voxel dimension 
of the MR images.  

IV. DISCUSSION AND CONCLUSIONS 

In this work, we propose a wASM-based method to 
segment the ICA in T2-weighted MR images. In the fully 
automated pipeline we have developed, the cochlea is first 
localized using a series of registrations, and then the wASM is 
fitted to the cochlea iteratively in the target image. To evaluate 
the results, we use the same shape model to segment the 
corresponding CT images and calculate the DSC and ASD 
between the two segmentation results, achieving a mean DSC 
of 0.81 and 0.79 for the two ICA structures. These results are 
promising and show that this automated segmentation method 
could potentially be used to conduct large-scale studies to, for 

 
Figure 3.  DSC and ASD results. 
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instance, find correlations between cochlear MR signal and 
hearing outcomes over time in AN patients; we have initiated 
such study. It may also enable the routine and clinical use of 
this cochlear signal information. 

We observe that abnormal MR signal occurs in several cases, 
e.g., local hypointensity within the cochlea. This may be 
caused by cochlear pathologies and it affects the segmentation 
results. Fig. 4 shows such an example but we note that the 
segmentation in this MR image remains reasonable because of 
the robust nature of wASM. One possible improvement is to 
adaptively downweight the outlier points during the fitting. In 
addition, since the image registration-based cochlear 
localization fails on 12/132 of the cases, we will explore 
alternative machine learning-based methods as we have done 
to register an atlas and other volumes to segment the cochlea 
in CT images [24]. 
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Figure 4.  An example of abnormal MR signals. For this case, DSC is 0.67 
and 0.59 for the ST and the SV. (yellow contour: segmentation in MR; Red 

contour: segmentation in CT; white arrows: abnormal MR signals) 
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