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Abstract— Accurate automatic liver and tumor segmentation
plays a vital role in treatment planning and disease monitoring.
Recently, deep convolutional neural network (DCNNs) has
obtained tremendous success in 2D and 3D medical image
segmentation. However, 2D DCNNs cannot fully leverage the
inter-slice information, while 3D DCNNs are computationally
expensive and memory intensive. To address these issues, we
first propose a novel dense-sparse training flow from a data per-
spective, in which, densely adjacent slices and sparsely adjacent
slices are extracted as inputs for regularizing DCNNs, thereby
improving the model performance. Moreover, we design a 2.5D
light-weight nnU-Net from a network perspective, in which,
depthwise separable convolutions are adopted to improve the
efficiency. Extensive experiments on the LiTS dataset have
demonstrated the superiority of the proposed method.

Clinical relevance— The proposed method can effectively
segment livers and tumors from CT scans with low complexity,
which can be easily implemented into clinical practice.

I. INTRODUCTION

Liver cancer is life-threatening and one of the most danger-
ous tumors to human health [1]. Computed tomography (CT)
is one of the most effective non-invasive diagnostic imaging
procedures to help doctors detect and characterize liver
lesions [2]. Moreover, accurate localization and segmentation
of liver and lesions is a crucial step for clinical diagnosis and
surgical planning [3]. However, in routine clinical practice,
manually segmenting liver and lesions from CT scans is time-
consuming and error-prone. Therefore, automatic computer-
aided segmentation methods are urgently needed.

In recent years, deep learning has advanced the develop-
ment of computer-aided diagnosis [4]. In particular, fully
convolutional networks (FCNs) [5], [6], e.g., 2D and 3D
FCNs, have achieved promising performance for medical
image segmentation [7], [8], [9], [10]. 2D FCNs have
achieved good segmentation results in many medical imaging
fields [11], and are broadly implemented for liver and tumor
segmentation in 2D CT slices [7], [8], [12]. However, 2D
FCNs ignore the inter-slice features in 3D volumetric CT
scans, which limits the segmentation performance. On the
other hand, replacing 2D convolutions with 3D ones, 3D
FCNs are capable to explore the inter-slice correlations
and learn deep 3D representations with volumetric inputs,
thereby obtaining more reliable results [13]. Regardless of
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the accuracy, high computational complexity and cost of 3D
FCNs impede the broader clinical use. To solve this issue,
much research effort has been devoted to maintaining an
accuracy-complexity balance [14], [15], [16], but most of
them focus on constructing hybrid architectures using 2D
and 3D convolutions together.

In this work, we first design a novel learning strategy
from a data perspective, termed as Dense-Sparse learning,
in which, two types of adjacent slices, i.e., densely adjacent
slices and sparsely adjacent slice, are feed into 2D FCNs
to probe the inter-slice information with different strides.
Furthermore, traditional convolutions in 2D nnU-Net [17]
are replaced with depthwise separable convolutions from the
perspective of network to form a 2.5D light-weight nnU-
Net for improving the efficiency. We extensively evaluate
the proposed method on the LiTS dataset [18]. Experimental
results demonstrate that the proposed method can achieve
comparable performance on liver and tumor segmentation
with much fewer parameters than 3D nnU-Net.

II. RELATED WORK

In the past decades, deep learning has received much
attention on various computer vision tasks, such as clas-
sification and segmentation [19]. A lot of methods based
on deep convolutional neural network (DCNNs) have been
proposed for liver and tumor segmentation [7], [12], [20],
[6]. Ben-Cohen et al. [7] present an fully convolutional
network (FCN) for liver and tumor segmentation. Chle-
bus et al. [12] propose a 2D U-Net with object-based post-
processing, obtaining high performance in liver and tumor
segmentation. Vorontsov et al. [20] employ two parallel
U-Nets [6] for joint liver and tumor segmentation. These
methods take 2D slices as inputs and thus ignore the con-
textual information between slices, limiting the segmentation
performance, while 3D FCNs [21], [22], [23] are supposed to
consider the inter-slice information, obtaining better segmen-
tation results than 2D models. For instance, Dou et al. [21]
introduce a deep supervision mechanism into a 3D FCN
for boosting the segmentation performance. Nevertheless,
training such 3D FCNs is time-consuming and memory-
consuming, which limits the wide applications of 3D models.

To probe the inter-slice information while reducing the
computational complexity, many methods from different per-
spectives have been proposed, including 2.5D models [24],
[16] and hybrid 2D–3D models [14], [15]. For example,
in [24], adjacent slices from 3D CT scans are used to train
a 2.5D FCN, while Li et al. [14] design a hybrid densely
connected UNet (H-DenseUNet) to jointly explore intra-slice
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Fig. 1. Overall pipeline of our method: (a) Dense-Sparse Sampling: densely adjacent slices and sparsely adjacent slices with different stride S are
cropped from volumetric images for DCNNs. (b) Depthwise Separable nnU-Net: Depthwise separable convolutions are performed on nnU-Net for each
input channel independently to reduce the parameters (c) Output: the output 2D segmentation results are stacked for generating 3D segmentation volumes.

and inter-slice features. These methods alleviate the problems
of 2D and 3D models to a certain extent. Differently, we con-
sider both data and network perspectives in our framework
for more efficient liver and tumor segmentation.

III. METHODOLOGY

The proposed framework is presented in Fig. 1. Firstly,
Dense-Sparse (DS) sampling strategy is used to generate
two different inputs, i.e., densely adjacent slices and sparsely
adjacent slices, for improving the model performance. Then,
a 2.5D nnU-Net with depthwise separable convolutions (DS
nnU-Net) is implemented as the segmentation model, in
which, all convolutional layers are replaced with depthwise
separable convolutions to reduce the computational complex-
ity. We further design a two-stage dense-sparse-dense (DSD)
training strategy, in which, densely adjacent slices and sparse
adjacent slices are randomly selected to train the network
at the first stage for fast convergence, while only densely
adjacent slices are fed into the network at the second stage
to improve the model robustness.

A. Dense-Sparse Sampling

Let I ∈ RN×W×H×T denote the training samples of
height H , width W and thickness T , where N is the
batch size. For a 2D network, only one slice (T = 1) is
used to generate the segmentation mask, lacking the context
information for volumetric medical image segmentation. In
contrast, a 3D network takes the whole volumes (all T
slices) as inputs, suffering from high computational costs.
In common, a 2.5D network uses a stack of T continuous
slices during training and generates the segmentation mask
for the central slice at the inference stage. For instance,
if T = 3, the densely adjacent slices 1, 2, 3 would be the
input of the 2.5D network to produce a 2D mask for slice 2.
The compromise can avoid high GPU memory consumption
of 3D convolutions while providing inter-slice information.
Beyond the densely adjacent slices, we propose a novel
dense-sparse sampling method to generate densely adjacent
slices and sparsely adjacent slices, as shown in Fig. 1 (a).

For the sake of simplicity, we take T = 3 as an illustration.
Let Si be the slice indexed by i in a CT scan |V |, where
i = {1, 2, 3, . . . , |V |}. In dense-sparse (DS) sampling, Ids is
a 3D input of thickness T = 3, which is described as:

Ids = {Si−(T//2+s−1)} ∪ {Si} ∪ {Si+(T//2+s−1)}, (1)

where // is integer division, and s is the stride of sampling.
In the case of edge slices, slices extending beyond the volume
were repeated. DS sampling shares the similar spirit of the
convolution kernels, in which, the stride in two dimensions
is for the height and the width movement, while the stride
of DS sampling is for the movement along the dimension of
thickness. More specifically, when s = 1, densely adjacent
slices Idense will be generated, while s > 1 is for dense
sampling to produce sparsely adjacent slices Isparse. With
Idense and Isparse together, the network can learn inter-slice
features efficiently. In our experiments, we set s = 1 and
s = 2 for dense sampling and sparse sampling, respectively.

B. Depthwise Separable nnU-Net
nnU-Net [17] is a self-adapting framework based on

generic U-Net architectures, such as 2D and 3D U-Net.
With various kinds of data augmentation, nnU-Net makes
full use of the potentials of U-Net. Considering the memory
constraints and negative impact from cropped patches for 3D
network training, we select 2D nnU-Net as our backbone and
design a depthwise separable nnU-Net (DS nnU-Net), which
employ depthwise separable convolutions instead of standard
convolution layers to further ease the computational burden,
as shown in Fig. 1 (b).

Let us consider a convolutional layer with an input feature
map FI ∈ RWI×HI×CI and output feature map FO ∈
RWO×HO×CO , where W∗, H∗ and C∗ are spatial width,
spatial height and the number of channels, respectively. The
output of a standard convolution layer with kernel KS ∈
RX×Y×CI×CO can be formatted as:

SC
(
KS ,FI

)
w,h,cO

=

X,Y,CI∑
x,y,cI

KS
x,y,cI ,cO · F

I
w,h,cI . (2)
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A depthwise separable (DS) convolution can be split into
2 separate kernels, i.e., the depthwise convolution and the
pointwise convolution. In depthwise convolution, each kernel
KD ∈ RX×Y×CI iterates one channel of the input feature
map FI . The output the depthwise convolution of can be
computed as

DC
(
KD,FI

)
w,h,cO

=

X,Y,CI∑
x,y,cI

KD
x,y,cI · F

I
w,h,cI . (3)

Following that, the pointwise convolution KP ∈
R1×1×CI×CO , also known as 1 × 1 convolution, is applied
to increase the number of channels. The mathematical for-
mulation is

PC
(
KP ,FI

)
w,h,cO

=

X,Y,CI∑
x,y,cI

KP
cI ,cO · F

I
w,h,cI . (4)

If we have a 3 × 3 convolution with input channel c
and output channel c, for standard convolution, it has 9c2

parameters, while the depthwise separable convolution con-
tains 9c + c2 parameters, which approximately reduce the
computational complexity by a factor of c. We replace all
standard convolutions with DS convolutions in our DS nnU-
Net, which has only 7.7 million (M) parameters, while 2D
nnU-Net has more than 40 M parameters.

C. Dense-Sparse-Dense Training

Since densely adjacent slices and sparsely adjacent slices
have different views of the data, which may cause negative
transfer across views. To this end, we proposed a two-
step progressive learning strategy, namely Dense-Sparse-
Dense (DSD) training to facilitate model optimization. In the
first DS (Dense-Sparse) step, we randomly input densely
adjacent slices and sparsely adjacent slices to train and
regularize the network for fast convergence. In the second D
(Dense) step, we retrain the network with all densely adjacent
slices for increasing the model capacity without overfitting.

IV. EXPERIMENTS

A. Dataset and Experimental Settings

We evaluate the proposed method on the Liver Tumor
Segmentation (LiTS) dataset [18], which includes 201 CT
scans (131 for training and 70 for testing). Since the ground
truths of testing data are not publicly available, for a fair
comparison, we randomly select 105 volumes for training
and the remaining 26 for testing in our experiments. The
CT volumes are resized to multiple slices of size 512× 512
after resampling and normalization. Following the settings
in nnU-Net, we train the network with the combination of
cross-entropy loss and dice loss. We implement DS sampling
with thickness T = 7. For DSD training, we set 400 and 600
epochs for DS step and D step, respectively.

According to the evaluation procedures of the LiTS
challenge, we evaluated the liver and tumor segmentation

performance using the only golden indicator, Dice per case
score, which refers to an average of Dice per volume score.

We compare our method with 2D nnU-Net and 3D nnU-
Net with full resolution. Besides, to validate the effectiveness
of different components of our pipeline, the following vari-
ants are evaluated.

• nnU-Net-DS: 2D nnU-Net with the proposed dense-
sparse sampling.

• nnU-Net-DSD: 2D nnU-Net with the proposed dense-
sparse-dense training strategy.

• DS nnU-Net-DSD: Depthwise Separable nnU-Net with
the proposed dense-sparse-dense training strategy.

TABLE I
SEGMENTATION RESULTS OF DIFFERENT METHODS ON LITS DATASET

Method Lesion Liver Params (M)Dice per case (mean (std), %)
2D nnU-Net 0.801 (0.024) 0.960 (0.004) 41
3D nnU-Net 0.827 (0.055) 0.965 (0.004) 37
nnU-Net-DS 0.804 (0.041) 0.962 (0.002) 41

nnU-Net-DSD 0.815 (0.032) 0.963 (0.003) 41
DS nnU-Net-DSD 0.814 (0.025) 0.962 (0.003) 7

B. Results and Discussions

The experimental results are shown in Table I. For a
fair comparison, we train all models with 1000 epochs.
Apparently, 3D nnU-Net outperforms 2D nnU-Net on liver
and tumor segmentation because it randomly samples 3D
patches from CT volumes, which is capable to capture 3D
contextual information for improved performance. 3D nnU-
Net has fewer layers and parameters than 2D nnU-Net, but
more training and inference time is required. Although 3D
networks can effectively improve segmentation performance,
it is also important to pay attention to model training. It
is well noted that the proposed dense-sparse sampling can
help improve the performance of 2D nnU-Net on liver and
tumor segmentation. With DS sampling and DSD training
strategy together, 2D nnU-Net achieved comparable perfor-
mance with 3D nnU-Net. The results have demonstrated the
effectiveness of the proposed DS sampling and DSD training
strategy for improving segmentation performance without
carefully modified architectures. On the other hand, we
implemented DS nnU-Net with the proposed sampling and
training strategies. It is observed that there is no significant
performance degradation on liver and tumor segmentation
with much fewer parameters, which is around 1/6 of 2D
nnU-Net. Furthermore, the training time is shortened by
around 25% on a single RTX 2020ti GPU.

Fig. 2 shows the visualization results of our method DS
nnU-Net-DSD. We can see that the masks of our method
are close to the ground truth labels, which further shows
the feasibility of the proposed method for efficient liver and
lesion segmentation.

V. CONCLUSIONS

In this work, we design a novel end-to-end deep learning
framework from both perspectives of data and network for
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Fig. 2. Examples of segmentation result and 3D display by the proposed
method (DS nnU-Net-DSD) on LiTS dataset.

liver and tumor segmentation. Extensive experiments show
that the proposed approach can obtain accurate segmentation
results, as well as speed up the training and inference
process with only 7 M parameters. Moreover, ablation studies
demonstrate the effectiveness of different components in our
framework. In the future, we will implement the proposed
method in other medical image segmentation tasks to evalu-
ate the generalization capability.
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