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Abstract— Low-cost wearables with capability to record elec-
trocardiograms (ECG) are becoming increasingly available.
These wearables typically acquire single-lead ECGs that are
mainly used for screening of cardiac arrhythmias such as
atrial fibrillation. Most arrhythmias are characteruzed by
changes in the RR-interval, hence automatic methods to di-
agnose arrythmia may utilize R-peak detection. Existing R-
peak detection methods are fairly accurate but have limited
precision. To enable data-point precise detection of R-peaks, we
propose a method that uses a fully convolutional dilated neural
network. The network is trained and evaluated with manually
annotated R-peaks in a heterogeneous set of ECGs that contain
a wide range of cardiac rhythms and acquisition noise. 700
randomly chosen ECGs from the PhysioNet/CinC challenge
2017 were used for training (n=500), validation (n=100) and
testing (n=100). The network achieves a precision of 0.910, recall
of 0.926, and an F1-score of 0.918 on the test set. Our data-
point precise R-peak detector may be important step towards
fully automatic cardiac arrhythmia detection.

Clinical relevance— This method enables data-point precise
detection of R-peaks that provides a basis for detection and
characterization of arrhythmias.

I. INTRODUCTION

Low-cost wearables with capability to record electrocar-
diograms (ECG) are becoming increasingly available. These
wearables typically acquire single-lead ECGs [1]. Even
though single-lead ECGs do not share the complexity of
information as their clinically used twelve-lead counterparts,
they can be used to detect cardiac arrhythmias [2]. Cardiac
arrhythmias are common, in particular atrial fibrillation,
which has an estimated incident rate of 0.5% - 2% worldwide
[3]. Although the majority of cardiac arrhythmias are not
life threatening, they have been associated with serious
cardiovascular diseases, such as stroke [3]. Smart wearables
may extend early detection of arrhythmias in the general pop-
ulation [4], but this would require highly accurate automatic
detection algorithms.

Existing automatic methods detect and classify different
types of cardiac arrhythmias. These methods rely on detec-
tion of features from the ECG signal such as the absence of
P-waves, or variability in the RR-interval duration [2], which

relies on R-peak detection. Common R-peak detection meth-
ods are either filtering-based [5]–[9] or wavelet-based [10].
Filtering-based methods use band-pass or moving average
filters in combination with thresholds, such as the increase
in voltage on the ECG, to determine the location of the peaks,
while the wavelet-based methods use the stationary wavelet
transform (SWT) to locate the high frequencies related to
the QRS-complex. Generally, these methods perform well,
but they may lack robustness against noise or pathology.

Recent deep learning (DL) methods have achieved state-
of-the-art performance in multiple ECG analysis tasks [11],
[12]. They can learn to recognize patterns from raw data, and
thereby achieve high robustness. Several DL-methods were
specifically designed for R-peak detection. Vijayarangan et
al. [13] employed a regression approach using a U-Net-like
1D convolutional neural network (CNN) for R-peak detection
in single lead ECGs. The CNN analyzes the raw ECG data
and for each data point it predicts the distance to the nearest
R-peak. Performance was evaluated using detection thresh-
old. The detection was considered correct if the distance
between the automatically detected and reference R-peak
was lower than the predefined distance threshold. Setting the
threshold to 75 ms, high performance was reported. However,
note that the threshold was set high, given the average QRS-
complex duration of < 120 ms [14]. Furthermore, Yu et
al. [15] proposed an R-peak detection method for 12-lead
ECGs. The method employs two 2D CNNs that analyse
image representations of ECGs. The first network extracts
bounding boxes around QRS-complexes and those are fed
into the second network that draws another bounding box
closer around the R-peak. Detection was considered suc-
cessful if the R-peak was within the final bounding box.
Conventional and deep learning-based methods detect R-
peaks precisely, but their accuracy is limited, which may
hamper performance of downstream tasks.

To overcome these shortcomings, we propose a method
that uses a fully convolutional dilated CNN for data-point-
precise R-peak detection. In ECG acquisition, the device
is occasionally mistakenly rotated, which results in the
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inverse signal polarity. Hence, prior to R-peak detection we
propose an optional detection and correction of the ECG
polarity. Our method is extensively evaluated using manually
annotated data-point-precise R-peaks and compared against
other automatic R-peak detection methods.

II. DATA

This study included single lead ECGs from the Phys-
ioNet/CinC Challenge 2017 [16]. The ECGs in this dataset
were acquired measured using a Kardia Mobile (AliveCor,
USA) device. This is a small wearable that can be attached
and connected to a smartphone. It acquires single-lead ECGs
by creating a circuit with the user’s fingertips. The ECGs
are sampled with 16-bit resolution at 300 Hz and have a
bandwidth of 0.5 to 40 Hz. The ECGs have an arbitrary
signal length varying from 9 to 61 seconds. The database
contains 8,528 ECGs from individual patients consisting of
four classes: 5,076 normal, 758 atrial fibrillation, 2,415 other
abnormalities, and 279 ECGs with extensive noise [16]. From
this set we randomly selected 500 ECGs for training, 100
for validation, and a hold-out set of 100 ECGs for final
testing. The ECGs in each set were equally balanced based
on their class. Several ECGs in the dataset were inverted, due
to electrode misplacement, i.e. the device was used upside
down. To define a reference standard, a researcher with over
two years of experience in ECG analysis manually annotated
the R-peaks by placing a point on the peak with data-
point precision. Normal R-peaks as well as R-peaks present
in abnormalities, such as noise or premature ventricular
complex, were annotated. Moreover, inversion of the ECG
was recorded.

III. METHOD

We propose an R-peak detection method that uses a CNN
that predicts whether the data-point is at the top of the R-
peak. Moreover, we provide an option to correct polarity of
an acquired ECG through another CNN that can be used as
a prior stage to R-peak detection. Both CNNs are designed
such that they process ECGs of arbitrary length as the lengths
of an ECG can vary from as short as nine seconds to over
60 seconds. Evaluation of the network is performed using
precision, recall, and the F1-score.

A. Polarity detection CNN

The polarity CNN takes an ECG as its input and it
outputs a binary class that indicates if polarity is inverted.
The CNN consists of six 1D convolutional layers with
increased numbers of kernels from 16 up to 64, doubling

every two layers. Each convolutional layer is alternated with
batch normalization, a leaky rectified linear unit, and 2-sized
average pooling. The sixth convolutional block ends with a
global average pooling layer to handle arbitrary lengths, and
the network ends with a fully connected layer and a sigmoid
activation function. If this network detects inverted polarity,
the ECG is corrected by negating the signal.

B. R-peak detector CNN

The R-peak-detector CNN takes an ECG as its input and
it outputs a binary class per data point to indicate if the data-
point is at an R-peak. The CNN employs dilated convolutions
that enable a large receptive fields with a limited the number
of trainable parameters. The architecture consists of nine
1D convolutional layers with increasing numbers of kernels,
starting at 16 increasing with a factor two after every two
layers. Each convolutional layer is alternated with batch
normalization and throughout the network leaky rectified
linear units are used for activation. Dilation factors from
2 to 32 are in convolutional layers 3 to 7, following a
pyramidal approach with increasing factors of two for each
layer. The two final layers use kernel sizes of 1 to mimic
fully connected layers. When processing an ECG the network
predicts whether a data-point is at the top of an R-peak.
The final output is bounded between 0 and 1 by a sigmoid
activation function.

C. Training and implementation details

The method was implemented using Python 3.7 and Py-
Torch 1.8. To correct possible baseline wander, the ECGs
were preprocessed with a first order high-pass Butterworth
filter with a cutoff frequency of 2 Hz [17]. Networks were
trained in 50.000 iterations with mini-batches of 32 instances.
Instances were random segments of 2500 data-points (=8.33
s). The networks were optimised using Adam with default
parameters β1 = 0.9 and β2 = 0.999, and a learning rate of
10−5 for the polarity CNN and 10−3 for the R-peak detection
CNN. The polarity CNN was optimised with a binary cross-
entropy loss, while the R-peak detection CNN was optimised
with the mean squared error. Optimal decision thresholds
were chosen based on maximum F1-scores on the validation
set.

IV. RESULTS AND EXPERIMENTS

Evaluation was performed on the 100 hold-out test ECGs
with 3,661 manually annotated R-peaks. We have evaluated
R-peak detection with and without polarity correction and
compared both methods with other R-peak detection meth-
ods.
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A. R-peak detection with polarity correction

The polarity detection CNN correctly identified all 15
(out of 100) ECGs with inverted polarity. Two ECGs were
incorrectly identified as inverted, likely due to large S-
deflections that were present in the ECGs. The polarity
detection CNN achieved an accuracy of 0.980, a precision
of 0.889, a recall of 1.000, and an F1-score of 0.941.

R-peak detection with the polarity detection stage was
trained using only correctly oriented ECGs. The method
correctly detected 3,389 of the 3,661 R-peaks. False positive
(n=272) and false negative errors (n=336) were predom-
inantly observed in ECGs containing noise. The method
achieved a precision of 0.910, recall of 0.926, and an F1-
score of 0.918.

B. R-peak detection without polarity correction

To evaluate the importance of polarity detection, R-peak
detection was trained without prior polarity detection. For
this, during training additional data augmentation was ap-
plied: ECG recordings were randomly negated to simulate
incorrect acquisition, resulting in a R-peak detector that is
robust to ECGs with inverted polarity. The method correctly
detected 3,305 of the 3,661 R-peaks. False positive errors
(n=421) were predominantly close to detected R-peaks, at
deep S-deflections, or in ECGs containing noise. False neg-
atives errors (n=356) were mainly R-peaks surrounded by
noise, and in rare occasions where the QRS-complex was
widened. The method achieved a precision of 0.887, a recall
of 0.903, and an F1-score of 0.895.

C. Comparison with other methods

We compared our method with other commonly used
R-peak detectors [18]. Figure 1 illustrates detection per-
formance of all evaluated methods. Given that the Phy-
sioNet 2017 dataset contains four classes of ECGs, we
show the peak detection performance for each of these
classes. Most R-peak detectors do not provide a data-point
precise prediction of the R-peak. Therefore, we evaluated
the methods using different detection thresholds. Table I
lists the performance of each detector. Our proposed data-
point precise R-peak detection method outperforms all other
methods for every evaluated detection threshold, with and
without polarity correction.

V. DISCUSSION AND CONCLUSION

We presented an R-peak detection method that allows
robust data-point precise prediction of R-peaks in single-
lead ECGs. The method achieves state-of-the-art results and

Fig. 1: Peak detection on an ECG for each class for each
peak detector.

outperforms commonly used R-peak detectors. An optional
polarity detection stage, which employs a CNN to detect
incorrectly acquired ECGs, may be used to further improve
the results.

Errors of our R-peak detection are predominantly caused
by false positive predictions in noise-peaks and false pos-
itive predictions close to correctly predicted R-peaks. The
occasional false negative predictions were mostly present in
variations of morphology in QRS-complexes (wider R-peaks)
and errors caused by the ECG polarity CNN. By increasing
the variability of ECG pathologies in our training set and by
improving the polarity CNN we expect that these issues can
be addressed.

Polarity detection achieved high accuracy correctly iden-
tifying the polarity in 98 out of 100 ECGs. The two failure
cases showed R-peaks followed by a deep negative S-
deflection and a positive T-top. Likely, the CNN identified
the S-deflection as an R-peak, instead of an S-peak. Unlike
conventional methods, our deep learning approach is likely
to improve in performance when trained with a larger data
set that contains more variability in ECG morphologies.
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TABLE I: Results of our proposed R-peak detection with and without a prior polarity correction stage and results of other methods
evaluated on the same test set. Performance is evaluated using the F1 score for different detection-thresholds. The highest performances
per threshold are indicated with bold font. Note that the method by Kalidas and Tamil [10] did not detect any R-peak with zero tolerance
threshold.

Detection threshold in data-points (1 data-point is 3.33 ms).
0 1 2 3 4 5 10 20 30 40 50

Christov [7] 0.129 0.350 0.499 0.583 0.632 0.653 0.708 0.764 0.815 0.836 0.851
Elgendi et al. [9] 0.002 0.012 0.065 0.077 0.079 0.079 0.133 0.399 0.927 0.932 0.940
Engelse & Zeelenberg [8] 0.825 0.825 0.825 0.825 0.825 0.825 0.828 0.840 0.843 0.846 0.849
Hamilton [6] 0.016 0.022 0.023 0.029 0.030 0.031 0.231 0.915 0.944 0.957 0.962
Kalidas & Tamil [10] 0 0.001 0.003 0.011 0.026 0.047 0.883 0.962 0.964 0.967 0.969
Pan & Tompkins [5] 0.006 0.124 0.137 0.137 0.137 0.137 0.194 0.471 0.940 0.955 0.958
Ours w/o polarity corr. 0.895 0.942 0.942 0.942 0.942 0.942 0.969 0.972 0.973 0.973 0.973
Ours with polarity corr. 0.918 0.948 0.948 0.949 0.949 0.949 0.976 0.977 0.977 0.978 0.978

Our method outperformed common R-peak detectors, es-
pecially with strict detection thresholds. This indicates that
the strength of our method is its R-peak detection with
data-point precision. This feature is especially important in
downstream tasks such as arrhythmia detection. For example,
during atrial fibrillation the heart rate is often >100 bpm [19]
with a highly variable RR-interval of <600 ms, emphasizing
the importance of data-point precise detection of R-peaks.
Our results show that conventional methods detect R-peaks
with less precision, i.e., with thresholds higher than 20 data-
points (66.7 ms) that is >10% of the RR-interval.

Our method may be extended to facilitate such data-point
precise measurements of other features in the ECG. As a
result it may be a suitable replacement for manual annotation
in a variety of clinical and screening tasks. Furthermore,
the polarity detection CNN could be trained end-to-end or
integrated with the R-peak detection network. Through data-
point precise detection of R-peaks, our method may provide a
first step towards the development of accurate fully automatic
cardiac arrhythmia detection.
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