
  

  

Abstract— In this study, a method for assessing the human 

state and brain-machine interface (BMI) has been developed 

using event-related potentials (ERPs). Most of these algorithms 

are classified based on the ERP characteristics. To observe the 

characteristics of ERPs, an averaging method using 

electroencephalography (EEG) signals cut out by time-locking to 

the event for each condition is required. To date, several 

classification methods using only single-trial EEG signals have 

been studied. In some cases, the machine learning models were 

used for the classifications; however, the relationship between 

the constructed model and the characteristics of ERPs remains 

unclear. In this study, the LightGBM model was constructed for 

each individual to classify a single-trial waveform and visualize 

the relationship between these features and the characteristics of 

ERPs. The features used in the model were the average values 

and standard deviation of the EEG amplitude with a time width 

of 10 ms. The best area under the curve (AUC) score was 0.92, 

but, in some cases, the AUC scores were low. Large individual 

differences in AUC scores were observed. In each case, on 

checking the importance of the features, high importance was 

shown at the 10-ms time width section, where a large difference 

was observed in ERP waveforms between the target and the non-

target. Since the model constructed in this study was found to 

reflect the characteristics of ERP, as the next step, we would like 

to try to improve the discrimination performance by using 

stimuli that the participants can concentrate on with interest. 

 

I. INTRODUCTION 

Event-related potentials (ERPs) are used to assess the 
human state [1]-[3] and build brain-machine interfaces (BMI) 
[4][5]. ERPs are small components that appear to be 
accompanied by a particular event and are usually difficult to 
observe without electroencephalography (EEG) processing 
owing to the basic rhythm of EEGs and external noise. Cutting 
out EEG signals triggered by events and averaging for the 
same recording conditions cancels EEG signals unrelated to 
the event and noise. However, observing ERPs with a few 
addition-averaging (ideally a single trial) is desirable because 
the averaging process reduces the efficiency of human state 
estimation and BMI. The oddball task is a relatively simple 
technique used in ERP experiments that randomly provides 
target and non-target stimuli to the experimental participants 
to discriminate the target, and a large ERP component 
approximately 300 ms can be obtained when the frequency of 
the target is low. EEG signals are obtained during many trials 
for target and non-target stimuli, and the differences in the 
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characteristic components of ERPs between target and non-
target trials were investigated. The method for classifying 
single-trial EEG signals into targets or non-targets has been 
studied. Typical examples are prediction models using 
machine learning, such as support vector machines (SVMs) [6], 
or deep learning, such as convolutional neural networks 
(CNNs) [7]. In both cases, the in-model structure of the 
features used for model construction cannot be determined; 
therefore, obtaining a hint to improve the models is difficult. 

The objective of this study is to construct a prediction 
model based on ensemble learning and to clarify the model 
structure of features in the constructed model. 

II. EXPERIMENT 

The experiment was executed with the permission of the 
president of Osaka Institute of Technology in accordance with 
the report of the Life Science Ethics Committee of Osaka 
Institute of Technology (No. 2018-12-2). The participants 
were healthy adults who provided written informed consent. 
Ten males and ten females aged between 24 and 61 years 
(average age: 41.3 years) participated. 

A. Experimental method 

The oddball task using visual stimuli was presented in a 
soundproof room. The participants were seated in front of the 
display. The height of the participant’s eye point and the center 
of the screen were matched, and the distance between the eye 
point and display was maintained at 70 cm. A box installed 
with two buttons was prepared at the participant’s hand to 
respond to the discrimination results. EEG and 
electrooculography (EOG) signals were measured using a 
general-purpose biological amplifier (PolymateV, Miyuki 
Giken Co., Ltd.) during the experiment. The time constant was 
3 s, and the sampling rate was 1000 Hz. EEGs were recorded 
using active electrodes (AP-C151(A)-015, Miyuki Giken Co., 
Ltd.) placed at 11 locations (F3, Fz, F4, C3, Cz, C4, T5, P3, 
Pz, P4, T6) based on the International 10-20 system. EOGs 
were recorded using small bioelectrodes (NT-211U, Nihon 
Kohden Co., Ltd.) attached to the outsides of both eyes, as well 
as above and below the dominant eye. The reference electrodes 
were placed on both earlobes, and the ground was attached to 
the forehead. To obtain data to investigate the inclusion of 
EOGs in EEGs, an eye-movement trial was executed before 
the oddball task while the participants were required to blink 
and to move their eyes left and right, as well as up and down. 
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B. Experimental task 

Two target stimuli and seven non-target stimuli, shown in 
Fig. 1, were used in the oddball task. A total of 162 stimuli 
were presented 18 times for each stimulus. The presentation 
program comprised 18 blocks, in which 9 types of stimuli were 
randomly arranged in one block. The stimuli for 0.5 s and the 
gaze point (+ mark) for 0.7 s were presented repeatedly. 

 

C. Preprocessing method for EEGs 

The EEGs were analyzed using EEGLAB [8][9]. They 
were processed using a notch filter (60 Hz) and a band-pass 
filter (1–30 Hz). The artifacts of the EOG components were 
removed using the data recorded before the experiment using 
the independent component analysis algorithm. The onset of 
the stimulus was set as zero on the time axis, and EEG signals 
from −200 ms to 600 ms were removed. The baseline of the 
EEG signals was corrected using the averaged amplitude from 
−200 ms to 0 ms. The EEG signals at four locations (C3, Cz, 
C4, and Pz) were averaged because the characteristic peaks of 
ERP in the oddball task were observed clearly around these 
four locations in our previous research [1]. 

III. MODEL CONSTRUCTION 

The binary classifications for EEGs obtained in the trial of 
target stimuli or non-target stimuli were performed using 
LightGBM models. 

A. LightGBM model 

The LightGBM model is a type of ensemble learning 
method [10]. It is a gradient-boosting method with a decision 
tree. One of the advantages of LightGBM is faster training 
speed [11] because an efficient learning process is adopted in 
the model [12]. In addition, it can visualize the feature 
importance. With these features, checking whether the 
designed features were used, as expected in the model, is 
possible. 

B. Dataset 

Preprocessed EEG signals were split into the first nine 
blocks and the latter nine blocks. The first half was used as the 
training data for constructing the LightGBM models, and the 
latter half was used as test data for the binary classification of 

the single-trial EEG signals. Five models using EEG data 

averaged 1–5 times were constructed using the dataset shown 

in Table I for each participant. After averaging the signals for 
all combinations in each class, the non-target dataset for 
training was randomly selected and reduced in number to 
match the same size as the target dataset. As the single-trial 
datasets were small, the class-weighted method was adopted, 
which performed better than the undersampling method.  

TABLE I.  THE DATASET FOR TRAINING 

Number of 

addition-averaging 

Number of EEG signals 

 in the training dataset 

Target Non-target 

Single trial (St) 18 63 

2 153 (18C2) 1953* (63C2) 

3 816 (18C3) 39711* (63C3) 

4 3060 (18C4) 595665* (63C4) 

5 8568 (18C5) 7028847* (63C5) 

* Undersampled before parameter tuning and training. 

C. Feature design 

After preprocessing and averaging, features were designed 
using the EEG signals from 0 ms to 600 ms. ERPs during 
oddball have characteristic peaks. To capture the features of 
the peaks, we focused on the mean amplitude and the standard 
deviation for sections divided by a time width of 10 ms. The 
mean amplitude indicates peak height, and the standard 
deviation captures the steepness of change before and after the 
peak. The 120 sections, including 10 sampling points, were 
obtained for a 600-ms period; that is, 120 feature sets were 
used for the model (Fig. 2). 

 

D. Parameter tuning 

Non-target datasets of the training datasets were randomly 
undersampled. Without the case of a single trial, 
undersampling was repeated 10 times, and 10 datasets were 
obtained for each participant and the number of addition-
averaging. All undersampled datasets were split into training 
and validation subsets for each class. The ratio of the number 
of training sub-data to verification sub-data was 2:1. The 
hyperparameter of each dataset was tuned using the 
combination method optuna module [13]-[15] and stratified k-
fold cross-validation imported from the scikit-learn module 
[16]. The combinations of the undersampled dataset and the 

 

Figure 1.  Visual stimuli. The target stimuli are designated 

 by the red dashed lines. 

 

Figure 2.  Mean amplitudes and the standard deviations were 
obtained for every 10-ms time width. 
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hyperparameters that recorded the best averaged AUC score 
for the validation subset were adopted for the model 
construction for each participant and the number of addition-
averaging. 

IV. CLASSIFICATION RESULT 

Using the constructed model, the single-trial EEG signals 
in the latter nine blocks were classified as target or non-target. 
Table II shows the classification results for all cases. The best 
score was 0.92. Some can be classified with very high AUC 
scores, while others cannot be classified well. Figure 3 shows 
the average and standard deviation of the AUC scores of all 
participants for each number of addition averages. The effect 
of the number of additive averages was significant [F (4, 19) 
= 9.37, p < 0.001]. The result of a Tukey–Kramer test 
demonstrated that the AUC score of a single trial was lower 
than that of the other models. Overall, AUC scores were not 
good in the cases of single-trial models, and they were 
improved in two-times averaging models. Even if the number 
of addition-averaging increases further, the performance does 
not improve. 

V. CONSIDERATION 

In some participants, the two-times averaging models had 
high AUC scores. To clarify this reason, the feature 
importance of LightGBM was compared to the ERP waveform 
because features were designed based on the characteristic 
peaks of the ERP waveform. 

For each model, the feature importance was divided by the 
maximum value of the 120 features. For each participant, ERP 
waves were observed by averaging the EEG signals for 18 
target cases and 63 non-target cases. Figure 4 shows contour 
maps of the feature importance and ERP waveforms of the 2nd 
and 20th participants. In both cases, as the number of addition-
averaging increases, the model focuses more strongly on the 
time width, where there is a clear difference between the two 
classes. Many addition-averaging models could not evaluate 
noise included in single-trial EEG signals and did not obtain a 
good AUC score. On the contrary, the two-times addition-
averaging models used almost all features evenly, so the AUC 
score improved. However, the AUC score of many addition-
averaging models did not drop significantly due to excessive 
focus on a specific time width, regardless of whether the score 
was good or bad for each participant. It may be better to 
consider that the noise-filled single-trial EEG signals were 
similar between the two classes. The grand-averaged 
waveform is an ideal single-trial ERP waveform. For example, 
if pulse noise is mixed in the non-target waveform at 
approximately 300 ms, as shown in Fig. 4(b), for any model to 
classify between the two classes of waveforms is impossible. 
To apply to BMI, considering a method for inducing the 
difference between the two classes rather than improving the 
model may be a better option. The images shown in Fig.1 are 
very similar. Azizian reported that the difference in ERP 
waveforms was reduced when the physical characteristics of 
the target and non-target images were similar [17]. Therefore, 
it is expected that if images with different spatial 
characteristics are used, classifying them as No.02, which 
demonstrated the best performance, is possible. In addition, 
the magnitude of the difference in the ERP amplitude in the 
target and non-target regions is affected by concentration 

during the task. It is also necessary to maintain concentration 
during a task, such as using stimuli wherein participants are 
interested. 

TABLE II.  THE SUMMARY SHEET OF AUC SCORES 

Participants 
AUC scores for number of addition-averaging 

St 2 3 4 5 

No. 01 0.72 0.76 0.70 0.73 0.71 

No. 02 0.83 0.92 0.90 0.88 0.87 

No. 03 0.68 0.76 0.71 0.61 0.65 

No. 04 0.66 0.65 0.61 0.59 0.59 

No. 05 0.77 0.86 0.86 0.87 0.86 

No. 06 0.56 0.72 0.68 0.69 0.66 

No. 07 0.50 0.52 0.45 0.45 0.47 

No. 08 0.48 0.65 0.62 0.67 0.67 

No. 09 0.54 0.60 0.62 0.61 0.64 

No. 10 0.56 0.65 0.62 0.64 0.66 

No. 11 0.54 0.70 0.72 0.77 0.73 

No. 12 0.52 0.63 0.57 0.58 0.56 

No. 13 0.46 0.55 0.58 0.60 0.61 

No. 14 0.50 0.45 0.46 0.49 0.47 

No. 15 0.39 0.56 0.48 0.43 0.44 

No. 16 0.73 0.76 0.75 0.76 0.76 

No. 17 0.59 0.55 0.57 0.51 0.51 

No. 18 0.72 0.77 0.73 0.72 0.70 

No. 19 0.60 0.69 0.70 0.70 0.70 

No. 20 0.43 0.53 0.46 0.44 0.44 

 

 

  

Figure 3.  Average and standard deviations of the AUC score 
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VI. CONCLUSION 

Based on the classification of the single-trial EEG signals 

using LightGBM models, the conclusions are as follows: 

• The structure of features inside model, which could 
not be visualized by the SVM and CNN models, could 
be visualized by the LightGBM models. They 
expressed the characteristic features of ERP 
waveforms. 

• The best AUC score for classification was 0.92, which 
was very high. The best averaged AUC score for all 
participants was two-times addition-averaging models. 
They emphasized some features and used almost all 
other features evenly in the cases of both participants 
with good and bad AUC scores. This was effective for 
the classification of noise-filled single-trial EEG 
signals.  

• In addition to improving the models, a study of the 
oddball task using clearly different stimuli should be 
conducted involving stimuli in which participants are 
interested. 

One of the limitations of this study is that we focused only 

on the LightGBM model in order to quickly reveal the 

relationship between the feature importance and ERP features. 

In the future, other algorithms (SVM, CNN, etc.) should be 

tried and compared in order to build models with better AUC 

scores. 
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(a) Participants: No.02                                                                                               (b) Participants: No.20 

Figure 4.  Feature importance and averaged-ERP waveform. The bar graphs and error bars in the background of the waveforms are the differences 
of amplitude and standard deviation between the target and the non-target for each time width. 
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