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Abstract— Cervical cancer is the fourth most common
cancer in women worldwide. To determine early treatment
for patients, it is critical to accurately classify the cervical
intraepithelial lesion status based on a microscopic biopsy.
Lesion classification is a 4-class problem, with biopsies being
designated as benign or increasingly malignant as class 1-3,
with 3 being invasive cancer. Unfortunately, traditional biopsy
analysis by a pathologist is time-consuming and subject to
intra- and inter-observer variability. For this reason, it is of
interest to develop automatic analysis pipelines to classify
lesion status directly from a digitalized whole slide image
(WSI). The recent TissueNet Challenge was organized to find
the best automatic detection pipeline for this task, using a
dataset of 1015 annotated WSI slides. In this work, we present
our winning end-to-end solution for cervical slide classification
composed of a two-step classification model: First, we classify
individual slide patches using an ensemble CNN, followed by
an SVM-based slide classification using statistical features
of the aggregated patch-level predictions. Importantly, we
present the key innovation of our approach, which is a novel
partial label-based loss function that allows us to supplement
the supervised WSI patch annotations with weakly supervised
patches based on the WSI class. This led to us not requiring
additional expert tissue annotation, while still reaching the
winning score of 94.7%. Our approach is a step towards the
clinical inclusion of automatic pipelines for cervical cancer
treatment planning.

Clinical relevance— The explanation of the winning Tis-
sueNet AI algorithm for automated cervical cancer classifica-
tion, which may provide insights for the next generation of
computer assisted tools in digital pathology.

I. INTRODUCTION

Cervical cancer is the fourth most common cancer in
women worldwide [6]. The reduction of cervical cancer
mortality is possible with earlier treatment through an early
diagnosis at the precancer stage. To make this diagnosis, a
tissue sample from the uterine cervix is extracted, fixed in
a paraffin glass slide, stained with hematoxylin and eosin
(H&E) and examined at a high resolution by an experi-
enced pathologist with a microscope. However, glass slides
diagnosis through visual inspection is time-consuming and
subject to inter- and intra-pathologist variation. In the hope to
reduce this variability and diagnosis time, glass slides can be
digitalized to create ultra-high resolution Whole Slide Images
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(WSI), which enables the development of image processing
algorithms to assist the pathologist and standardize diagnosis.

In this context, the TissueNet data challenge [9] was
organized to allow machine learning approaches to compete
for the automatic detection of the epithelial lesions of the
uterine cervix. Lesion classification is a 4-class problem,
with biopsies being designated as benign or increasingly
malignant as class 1-3: LSILs (class 1) is Low-grade squa-
mous intraepithelial lesion confined to the inner one-third
of the epithelium. HSILs (class 2) is High-grade squamous
intraepithelial lesion, spread beyond the lower third of the
epithelium. SCC (class 3) is squamous cell carcinoma cor-
responding to an invasive cancer [2].

The challenge featured one thousand expert-labeled Whole
Slide Images (WSIs) collected from medical centers across
France. Annotations are equisized squares focused in and
around the epithelium: the area of interest for cervical cancer
diagnosis. Therefore, most machine- and deep learning-
based approaches [see comprehensive review 5] first seg-
ment the epithelium from non-epithelium tissue, after which
epithelium-only tissue features are used to predict the slide
label. The TissueNet data and annotations, however, do not
lend themselves easily to training an epithelium segmentation
algorithm as only square annotations with a single label were
provided. To succeed, contestants needed to overcome this
limitation, besides the usual problems faced in histopatholog-
ical image analysis such as stain, cell, and tissue variability.

Given these conditions, our winning end-to-end WSI clas-
sification approach is described in Figure 1 and consists of
two main steps. First, we use a multi-resolution DenseNet
ensemble [4] to predict the lesion class at patch level
for all tissue in a slide, ignoring the distinction between
epithelium and non-epithelium tissue. The slide label is
then predicted with an SVM classifier trained using the
statistical features calculated from aggregating patch-level
predictions. We found that the lack of non-epithelium an-
notations causes many benign non-epithelium patches to be
erroneously classified as cancer. Based on the knowledge
that a slide cannot contain annotations more severe than its
label, we supplement the TissueNet annotations by adapting
the Hard Negative Mining (HNM) approach [7] to recover
weakly supervised, partially labeled patches from benign,
class 1 and 2 labeled WSIs [1]. We introduce a novel partial
label-based loss to train on both labeled and partially labeled
patches, which was key to achieve the best performance in
the challenge.

The article is organized as follows: In Section II, we detail
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each step of our analysis pipeline and present the partial
labeling-based loss function. In Section III, we present our
challenge results and show the quantitative and qualitative
effects of including partially labeled patches. Finally, in
Section IV, we discuss the choices made and possible
improvements.

II. MATERIALS AND METHODS

In this section we present the TissueNet data, our novel
partial label loss, and our end-to-end processing pipeline.

A. TissueNet Data

The data consists of 1015 annotated WSIs for supervised
training. In total, there were 5926 local square annotations
within these labeled slides, consisting of 300µm×300µm
squares indicating graded tissue areas: 0) benign (normal or
subnormal), 1) low malignant potential, 2) high malignant
potential, and 3) invasive cancer. Annotations are found
around the epithelium region, equally distributed between
the four classes. The WSI images are acquired at 0.25µm/pix
resolution (level 0), but are structured into pyramidal ”levels”
to enable loading at lower resolutions by factors of 2, such
that levels [1, 2, . . .] are [0.5, 1.0, . . .]µm/pix.

B. Defining A Partial-Label Cross-Entropy Loss for Weakly
Supervised Patches

Partially labeled, multi-class classification is a problem
where instead of a single label per instance, the algorithm
is given a candidate set of labels, only one of which is
correct [1]. Applied to cervical cancer classification, we
know that patches cannot be classified as a higher class
than the slide they originate from. This means a benign
slide cannot contain class 1-3 patches, a class 1 slide cannot
contain class 2-3 patches, and a class 2 slide cannot contain
class 3 patches. Patches thus inherit a weak partial label from
the slide label, where we know it cannot be any higher class
than the slide, but have no information on which of the valid
candidates is the true class.

Let x(m) be the sample image and y(m) the image class for
sample m. In the case of partial labeling, y(m) is not known
but instead a set G(m) is known such that y(m) ∈ G(m). The
goal is then to find a loss function that still allows a classifier
to learn from these instances despite the ambiguous labeling.

Previously proposed loss functions include partially la-
beled binary cross-entropy (BCE) applied to multi-class
classification [1]. However, we found that using this straight-
forward approach actually decreased performance: false neg-
atives increased faster than false positives decreased.

Instead, we chose to develop a categorical cross-entropy
(CCE) loss adapted to partially labeled data, which as far
as we know was not previously used in the literature. This
approach has the advantage of being interpretable in terms of
probabilities (compared to sigmoid-based multi-class BCE)
and is a generalization of the standard CCE, which we used
for labeled patches. We define a loss that minimizes the
difference between the (softmax) output of a network ŷ and
partially labeled pseudo-label ȳ, which we define below.

We denote z(m) = g(x(m)) ∈ RL the vector of logits of
length the number of class predictions L given by network
g. Dropping the image indexing (m) for convenience, we
define ŷ the network prediction after a softmax layer as
ŷ = [ŷ0, ŷ1, ŷ2, ŷ3], where

ŷi =
exp(zi)∑L−1

k=0 exp(zk)
, i :∈ 0 . . . L− 1. (1)

The categorical cross entropy is then computed as

LCCE(ŷ, ȳ) =

L−1∑
i=0

−ȳi log ŷi

.
We design the pseudo-label ȳ to enforce four conditions:
1) Normalization to one:

∑L−1
i=0 ȳi = 1;

2) Zero labeling of non-candidate classes: ȳi = 0,∀i /∈ G;
3) The labeling should not modify a valid solution. If

ŷi = 0,∀i /∈ G, then ȳ = ŷ and thus ∂LCCE(ŷ,ȳ)
∂z = 0;

4) Finally, gradient neutrality towards in-set classes:
∂LCCE(ŷ,ȳ)

∂zi
= ∂LCCE(ŷ,ȳ)

∂zj
,∀i, j ∈ G.

The neutrality condition is key to learning from par-
tial labels using CCE. For example, in the case ŷ =
[0.4, 0.1, 0.25, 0.25] and G = {0, 1}, we want to suppress
the two invalid classes but also equally push the solution
towards each class in G, since we have no information to
prefer one over the other.

We will show that the following pseudo-label expression
satisfies all four conditions:

ȳi =

{
ŷi + 1

|G|
∑

k/∈G ŷk , i ∈ G
0 , i /∈ G.

(2)

Note that if |G| = 1 we return to the usual CCE one-hot
encoded target label. For the example given this definition
results in the pseudo-label ȳ = [0.65, 0.35, 0, 0], satisfying
conditions 1) and 2). We now derive the CCE gradient using
this pseudo-label to show it also satisfies gradient conditions
3) and 4).

We define the gradient by first defining the partial gradient
for the CCE and softmax, with δ being the Kronecker
symbol:

∂LCCE(ŷ, ȳ)

∂ŷi
= − ȳi

ŷi

∂ŷj
∂zi

= ŷi(δij − ŷj) (3)

where also j ∈ 0, . . . , L− 1. The gradient with respect to
z is then given by

∂LCCE(ŷ, ȳ)

∂zi
=

L∑
j=1

∂LCCE

∂ŷj

∂ŷj
∂zi

(4)

=

L∑
j=1

(
−ȳj

ŷi(δij − ŷj)
ŷj

)
(5)

= −ȳi +

L∑
j=1

ȳj ŷi (6)

= ŷi − ȳi (7)
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Fig. 1. Our end-to-end cervical cancer classification pipeline. We start by pre-processing the raw WSI to normalize and segment the foreground tissue
mask. Then, we use a multi-resolution ensemble CNN to predict at patch level the probability of each of the four lesion classes. The ensemble was trained
using both strongly supervised and weakly supervised, partially labeled patches. Next, we reduce the patch-level probabilities to a slide-level statistics
feature vector. Finally, we feed these statistics into an SVM classifier to predict the slide-level lesion status.

where simplification (7) is due to condition 1:
∑L−1

i=0 ȳi =
1. Filling in Eq. (2) for ȳ results in

∂LCCE(ŷ, ȳ)

∂zi
=

{
− 1
|G|
∑

k/∈G ŷk , i ∈ G
ŷi , i /∈ G.

(8)

We verify that indeed the gradient is zero everywhere
when

∑
k/∈G ŷ

(i)
k = 0, satisfying condition 3). When this

is not the case, we see that the gradient is equal for all
classes in the valid set, satisfying condition 4). Indeed,
filling in the example we gave before, the gradient would
be [−0.25,−0.25, 0.25, 0.25], pushing the solution equally
towards classes 0 and 1, and away from invalid classes 2
and 3 by their softmax value.

C. End-to-End TissueNet Processing Pipeline

Our end-to-end processing pipeline consists of 4 steps, as
shown in Figure 1.

1) Tissue Detection: We normalize the brightness of the
input WSI and segment the foreground tissue mask at image
level 6 (16 µm/pix), which offers a compromise between
the execution time and the segmentation quality. Brightness
normalization ensures the WSI background to be white (no
absorption). We guarantee this by selecting a frame close
to the outer edge of the scanned area - where no tissue
is expected - and take the median of each channel and
divide the image by this value. After normalization, we
use Otsu’s method to detect tissue areas, followed by some
morphological filtering opening/closing to clean small false
positive and holes in the mask.

2) Multi-Resolution, Ensemble-Based Patch-wise Classifi-
cation: We use a multi-resolution ensemble CNN to predict
benign and 1-3 class probabilities per patch.

a) Patch Resolution: Accurate lesion classification re-
quires both sufficiently high resolution and enough context

on the full thickness of the epithelium. Therefore, our en-
semble CNN uses a range of patch sizes and resolutions:
256×256 at level 3 (2µm/pix, high resolution, less context),
256 × 256 at level 4 (4µm/pix, lower resolution, more
context) as well as 384× 384 at 2µm/pix.

b) CNN Ensemble: For our CNN ensemble we use
DenseNets [4], as we found it outperformed ensemble com-
positions using ResNets. After experimentation, We found
the best performing ensemble used DenseNet169 on level
4 patches and DenseNet121 on Level 3 patches, both pre-
trained on ImageNet. Having tried several combinations, we
chose a linear combination of the five models (two on level
4, three on level 3), followed by a softmax layer to output
the final four class probabilities per patch, see Table I.

c) Data Augmentation and Training Parameters: We
augment our data using digital pathology specific HED color
augmentation [8], random linear transformation, Cutout [3]
and CutMix [10]. To train each CNN, we use 200 epochs
with a learning rate of 5 × 10−2 and use Glorot weight
initialization. For classification, we use the categorical cross-
entropy loss and add a `2 weight regularization with λ ∈
[0.01− 0.5] depending on the dataset.

d) Hard Partial Label Mining: Annotations were given
primarily in the epithelium, giving the network a cancer
bias towards non-epithelium benign tissue. We use HNM [7]
adapted to partially labeled data to enrich our training data.
After one training round on annotated patches, we do a full
inference on all benign, class 1, and class 2 tissue slides.
For normal slides, we add misclassified lesion class 1, 2
and 3 patches to the training data. For class 1 slides we add
misclassified class 2 and 3 patches and misclassified class 3
patches for class 2 slides. In the second round, these partially
labeled patches are added to the annotated patches with a
specialized partial-label loss, which we presented in Section
II-B.
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TABLE I
REPORTED ACCURACY OF THE SEPARATE AND PROPOSED

MULTI-RESOLUTION ENSEMBLE NETWORKS. HERE PL REPORTS THE

ACCURACY ONLY PARTIALLY LABELED PATCHES

Model Patch Size Resolution Accuracy Accuracy (PL)
DenseNet169 256× 256 4 µm/pix 79% 95%
DenseNet169 256× 256 4 µm/pix 79% 96%
DenseNet121 384× 384 2 µm/pix 80% 97%
DenseNet121 384× 384 2 µm/pix 81% 96%
DenseNet121 256× 256 2 µm/pix 81% 95%

ensemble 85.0% 98.0%

3) Slide-wise Patch Feature Aggregation: Depending on
the tissue in the slides, the number of patches varies from less
than 5 to over 7000. Patches were chosen to overlap 75%,
averaging the predicted class probabilities in overlapping
areas. The aggregation step consists in calculating, for each
class separately, statistics on the previously calculated patch
predictions, and concatenating them into a vector of fixed
size. Specifically, we obtain a feature vector with histogram
percentiles X̂ = [p80,i, p90,i, p95,i, p99,i] for lesion class
index i = 0, 1, 2, 3.

4) Slide-wise SVM Classification: Given feature vector
X̂, we use SVM to predict the probability distribution
p = [p0, . . . , p3] that the slide belongs to class [0-3]. We
trained the SVM with linear kernel, regularization parameter
C = 0.5 and kernel coefficient γ = 0.21, using 10-fold
cross-validation on the patch prediction validation data. We
also use the contest reward matrix R ∈ R4×4 to maximize
the expected score. Our final prediction is chosen from gain
r = pR as i∗ = argmaxiri.

III. RESULTS

In this section, we present the results of this paper. In
section III-A we present the effect of adding patches to
the problem using the partial loss based on HNM. Then,
in Section III-B we present our winning results for the
TissueNet challenge.

A. Effect of Adding Partially Labeled Patches to Training

To show the effect of adding partially labeled patches to
model training we use only the DenseNet121 working on
patches of size 256× 256 at 2µm/pix. In Figure 2 we show
two different scenarios: using only pathologist-annotated
patches (left) versus also including partially labeled patches
(right). For each scenario, we show the patch-wise prediction
confusion matrix on the validation set of TissueNet (top row),
as well as an overlay of the patch prediction over a benign,
class 1, 2 and 3 slide (bottom 4 rows). It can be seen that only
using pathologist annotations results in patches often being
classified as a higher lesion class than the slide label, which
is inconsistent. Adding partially labeled patches to model
training results in slides rarely containing patches with a
higher lesion class than the slide label, improving subsequent
slide label prediction. We therefore used this approach to
create ensemble CNNs for challenge submission.

Fig. 2. The effect of including partially labeled patches in the training
process, represented in confusion matrices (top row) and with patch classi-
fication overlay on a benign slide and class 1-3 slides (bottom 4 rows).

B. TissueNet Challenge Results

In Table I we evaluate the patch-wise prediction accuracy
of separate DenseNet models at different resolutions, along
with its ensemble. Notice that each separate model reaches
an accuracy around 80% on multi-class accuracy, and over
95% on the partially labeled patches. The ensemble of the 5
models increases the multi-class accuracy to 85% and also
slightly increases the partially labeled accuracy to 98%.

In Table II, on the top we show the confusion matrix of
our patch-wise lesion class prediction, and on the bottom the
confusion matrix of the subsequent WSI-level lesion class
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TABLE II
THE CONFUSION MATRICES OF OUR PROPOSED PATCH-WISE

MULTI-RESOLUTION ENSEMBLE NETWORK (TOP) AND OUR

AGGREGATE-BASED WSI PREDICTION USING SVM (BOTTOM). NOTE

THAT ERRORS ARE USUALLY MADE BETWEEN NEIGHBORING CLASSES,
BUT NOT DISJOINT CLASSES. TOP RESULTS ON THE VALIDATION SET,

BOTTOM ON THE (NOW UNAVAILABLE) TEST SET OF TISSUENET.

Ensemble CNN Patch-wise Pred.
Class Benign class 1 class 2 class 3

Benign 0.965 0.024 0.010 0.0
class 1 0.252 0.645 0.096 0.007
class 2 0.075 0.130 0.770 0.025
class 3 0.010 0.0 0.024 0.966

Aggregate SVM WSI Pred.
Class Benign class 1 class 2 class 3

Benign 0.764 0.217 0.019 0.0
class 1 0.211 0.690 0.099 0.0
class 2 0.021 0.261 0.685 0.034
class 3 0.0 0.014 0.033 0.953

prediction after aggregation. In both cases most errors are
made between adjacent classes. This is consistent with the
pathologists’ intuition, where differences between adjacent
classes can be subtle. In both settings, lesions tend to be
underclassified, with the most frequent error being class 1
being classified as benign tissue, and class 2 being classified
as class 1. However, class 3 (cancer) is accurately classified.

IV. DISCUSSION AND CONCLUSION

In this work, we presented our winning end-to-end
pipeline for whole slide image-based cervical cancer clas-
sification. The key points for our success were:

• The choice of context and the resolution (image-level)
of the analysis, which was reached in consultation with
expert pathologists;

• Our use of hard partial label mining and novel partial
label CCE loss to counteract the annotation bias of
benign tissue, which were mostly annotated in the
epithelium and not the cervical stroma (Figure 2);

• Our use of multi-resolution ensemble models whose
parameters are driven by different contexts, whose im-
provement we show in Table I;

• Taking into account the challenge reward matrix as a
penalization matrix in the final class prediction.

Finding the best patch-prediction ensemble CNN was
one of the hardest optimization problems in the challenge.
The reason being that finding the best CNN composition
is hard to measure, given that the ensemble’s purpose is
to generate patch probability features from an entire slide
as input to an SVM, which predicts the final slide label.
It was computationally infeasible to evaluate each trained
model on the entire validation set of 203 slides through this
pipeline, which can take up an hour for each set of possible
hyperparameters. Instead, we chose ensemble composition
based on a model’s accuracy on only patches of the validation
and normal slides. However, choosing the best model based
on accuracy can also be ambiguous given that we estimate

accuracy both on the pathologist annotated patches and the
additional partially labeled patches.

Regardless of the model composition, it is still difficult
to classify differences between adjacent classes, as there are
many borderline cases, in which also the ”ground truth” slide
label will have large inter-observer variability. Regardless,
we show in Table II that we make few ”expensive” mistakes
(classifying cancer as benign or vice-versa), and errors
mainly exist in neighboring classes.

Finally, our approach led us to the winning score of 94.7%.
While still not perfect, our approach is a step towards the
clinical inclusion of automatic pipelines for cervical cancer
treatment planning.
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