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Abstract— Modern sequencing technology has produced a
vast quantity of proteomic data, which has been key to the
development of various deep learning models within the field.
However, there are still challenges to overcome with regards to
modelling the properties of a protein, especially when labelled
resources are scarce. Developing interpretable deep learning
models is an essential criterion, as proteomics research requires
methods to understand the functional properties of proteins.
The ability to derive quality information from both the model
and the data will play a vital role in the advancement of
proteomics research. In this paper, we seek to leverage a BERT
model that has been pre-trained on a vast quantity of proteomic
data, to model a collection of regression tasks using only a
minimal amount of data. We adopt a triplet network structure
to fine-tune the BERT model for each dataset and evaluate its
performance on a set of downstream task predictions: plasma
membrane localisation, thermostability, peak absorption wave-
length, and enantioselectivity. Our results significantly improve
upon the original BERT baseline as well as the previous state-of-
the-art models for each task, demonstrating the benefits of using
a triplet network for refining such a large pre-trained model
on a limited dataset. As a form of white-box deep learning, we
also visualise how the model attends to specific parts of the
protein and how the model detects critical modifications that
change its overall function.

I. INTRODUCTION

Deep learning models such as deep neural networks
(DNN) are becoming increasingly popular in bioinformatics
as they can handle large datasets, require minimal feature en-
gineering and are capable of handling complex relationships
within the data. Deep learning has proven that it can model a
variety of complex processes within biology, as these models
provide predictions without any explicit knowledge of the
specific physical and biological mechanisms. However, a
substantial amount of labelled data is usually required during
the development stages. These resources are often not avail-
able for certain protein design and engineering tasks, which
is inconvenient when modelling critical properties within
a protein [48, 47, 46]. Computational bioinformatics and
protein modelling require new approaches to develop robust
deep learning models that can combat the lack of labelled
data. A majority of the deep learning techniques applied in
bioinformatics research originate from applications within
image classification [21, 13, 35] and language modelling [31,
41, 8]. State-of-the-art approaches in the fields of natural
language processing (NLP) [31, 32, 8], and computer vision
(CV) [19, 43, 38], now commonly employ a technique known
as pre-training. These methods have revealed that DNNs can
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still retain their performance as these methods produce robust
models with a limited number of training examples.

The method of pre-training requires a deep learning model
to be trained on a separate task before being fine-tuned
to a different dataset [16]. The utility of pre-training was
first demonstrated within the field of computer vision [7,
49], as large convolutional neural networks were initially
trained on vast image datasets, before being fine-tuned to
specific tasks [21, 40, 37]. In NLP, state-of-the-art language
models use vast corpora of text to perform unsupervised, or
self-supervised pre-training [31, 32, 8]. Recent approaches
within protein sequence analysis have employed similar
methods during training [48, 33, 30]. However, pre-training
is still costly and time-consuming to perform as it requires a
considerable amount of computational resources, and so has
had a slow adoption rate within computational biology.

Computer vision was again at the forefront of modern
machine learning with the application of metric-learning for
modelling limited datasets. In metric learning, the original
inputs to a DNN are transformed into a feature space that
can be used to compare and match examples based on
a distance metric (i.e. Euclidean distance, cosine-distance)
[45, 17, 28]. Examples of such deep metric-learning include
the use of siamese networks [19], triplet-networks [9], and
matching networks [43]. In this work, we aim to determine
if both pre-training and metric learning can be implemented
simultaneously to develop a deep learning model that is
suitable for modern protein sequence analysis.

In this paper, we will consider a pre-trained BERT model
[33], which is based on a large corpus of unlabeled protein
sequences with the goal of re-purposing this model by fine-
tuning it using a triplet network for a set of downstream
tasks. During training, triplets (i.e. anchor, positive and
negative) of the protein sequences will be used along with
weight-sharing within the BERT model to cluster the data
based on a triplet loss [15]. The BERT model will be used
to produce a vector representation for the anchor, positive
and negative protein respectfully. During training, a protein
is considered to be a positive example to the anchoring
protein if its labelled value (i.e. measured property) is closer
in absolute value to the anchor’s label when compared to
the negative instance. Throughout the tuning process, new
triplets are formed as the BERT model undergoes semi-
supervised training, and begins clustering individual cases
within the dataset.

Determining the critical properties of a protein is one
of the most challenging aspects of any downstream task.
Traditionally, many of these properties are discovered by
examining the physical structure of the protein. However,
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this is often a very time-consuming and expensive process.
Another option is to encode each amino acid with a basic
set of physical properties (e.g. its charge or hydrophobicity).
Inevitably many physical properties can be missed or poorly
represented by such feature engineering, which then leads
to overfitting and inadequately modelling of the downstream
task. Many have considered encoding the primary structure
of the protein (i.e. the sequence of amino acids) [18, 39,
44], where a vector of real numbers represents each amino
acid, and are optimised in a deep learning model. Since deep
learning is often used to avoid feature engineering, these
models can capture sophisticated features by analysing the
original sequence of amino acids.

As vast resources of proteomic data become available
(e.g. the UniProt database [5]), it provides an opportunity
to use large amounts of unlabelled (with respect to the
downstream task of data) data to perform large-scale pre-
training. This could be a vital step forward for proteomic
research as it is a far less expensive and time-consuming
alternative. Rao et al. displayed the potential of pre-training
and fine-tuning for protein sequence analysis by introducing
the Tasks Assessing Protein Embeddings (TAPE) [33]. They
benchmarked the current state-of-the-art models on a set
of five protein tasks that included a variety of domains
within proteomics. This included a Transformer model [41],
a ResNet model [50], and a long short-term memory (LSTM)
model [14] of their own design. In addition to these three
models, they also benchmarked two previously proposed
architectures; another a bidirectional LSTM model [2], and
a unidirectional mLSTM [20, 1]. Rao et al. experiments
concluded with the transformer model outperforming every
other model tested concerning its accuracy, perplexity and
exponentiated cross-entropy [33]. These results were not
surprising as transformer-style architectures have quickly
become the new standard for many NLP tasks [41, 8, 6].

Given that Rao et al. have shown that both a transformer
is a strong candidate for modelling a protein sequence [33],
we aim to build upon their work by testing this pre-trained
model on four downstream tasks introduced by Yang et al.
[48]. In this way, we aim to investigate whether such pre-
trained embeddings can help predict relevant properties for a
set of downstream tasks. We aim to improve this pre-trained
model with the use of a triplet style network to fine-tune the
model to incorporate additional relevant information about
the protein for each specific downstream task. A drawback
to Rao et al. work was that they only tested their transformer
network using a character-based encoding [33]. However,
state-of-the-art transformer language models now commonly
use a subword encoding algorithm before embeddings a
sentence [31, 32, 8]. Subword algorithms such as byte-
pair encoding algorithm (BPE) [10], or unigram encoding
algorithm [22] can provide more extensive vocabulary during
training. These encoding algorithms also have the added
benefit of reducing the length of the input sequence. This
could also reduce the time and cost required to model protein
sequences without using excessive amounts of padding.

In an extension to the Rao et al. work, Vig et al. explored

how this BERT model [33] was capable of discerning struc-
tural and functional properties about the protein [42]. Vig
et al. proved that the model was able to model long-range
dependencies within the sequence of amino acids. It was also
able to deduce information about the protein based on the
folding structure, target binding sites, and additional complex
biophysical properties [42]. They concluded that the specific
heads within the model attended to individual amino acids,
as the attention similarity matrix was positively correlated to
the expected substitution scores (i.e. BLOSUM62) for each
amino acid. Vig et al. noted that the deeper layers of the
BERT model focused relatively more attention on binding
sites and contacts [42]. In contrast, information about the
secondary structure (i.e. low- to mid-level concepts) within
the protein was targeted evenly across each of the layers.

Another example of using pre-training was by Yang et
al. [48]. They applied both pre-training and an n-gram
encoding strategy to analyse a set of proteins. Their approach
consisted of using a tri-gram encoding to each protein
sequence analysing the set of tri-grams with a Doc2Vec
model [23]. The method encodes the protein in a trivial
fashion, which makes it susceptible to poorly represented
(i.e. infrequent) tri-grams that can later affect pre-training.
Lennox et al. improved on this work by testing the use
of subword algorithms on protein sequences [26]. Both
approaches are unfavourable as they implement Doc2Vec
models, which return a single vector representation for the
entire protein. This makes it difficult to interpret each vector
representation when querying specific modifications in the
protein.

Metric learning is still uncommon within computational
biology deep learning even though it has become standard
practice in computer vision [19, 9, 43]. There have been
many improvements to deep metric learning from its intro-
duction with the siamese style networks [3, 4, 12]. One of the
most notable instances was by Hoffer et al. with the triplet
network [15].

In this work, we aim to use such a triplet style training
procedure to improve the encodings produced by the BERT
model of Rao et al. [33]. We extract embedded representa-
tions for four protein property prediction tasks [48] using the
pre-trained BERT model [33], and then fine-tune our BERT
model to each task. The tasked covered in this investigation
contain proteins from various families, and library designs
that were not included in Rao et al. work [33]. We show
that the predictive power of models trained using these
embeddings exceeds those trained on the previous state-
of-the-art methods. This approach can be an accurate and
efficient alternative as it does not require alignment or any
additional structural data about the protein. A series of
visualisation techniques will be used to present the critical
relationships with the data, and how the BERT model attends
to specific amino acids in the protein.

II. MATERIALS AND METHODS

Previous applications of pre-training [48, 26] and deep
metric learning [24] have shown a clear benefit to applying
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either technique to analyse protein data. One key drawback
to these approaches is the limited window sizes to which they
encode segments of the protein. This can be detrimental to
the model’s performance as it is unable to capture long-range
dependencies within the protein and therefore encodes less
information about the protein’s final structure. Our approach
improves upon these examples by using a BERT-style model
that is capable of encoding the complete protein in a bidi-
rectional fashion. Past work has justified the importance of
either pre-training the model or using metric learning. There
is still room for improvement by bringing both approaches
together by utilising a state-of-the-art pre-trained network
than has been fine-tuned using a triplet style network. Since
the pre-trained BERT model of Rao et al. has not been set
up to handle a subword encoding (e.g. BPE or Unigram),
we aim instead to set a stable baseline for the application of
both pre-training and deep metric learning that will only use
a character-based encoding.

A. Modelling Scheme

The Triplet-BERT network employed in this investigation
is outlined in Figure 1. For each task, the proteins are
encoded by a BERT model [33], which has been re-trained
on a set of protein sequences used in TAPE investigation.
These proteins were collected from the recently curated Pfam
database [11], which holds approximately thirty-one million
protein domains and forms the corpus used to train large
sequence models as featured in TAPE [33]. The architects
of the Pfam database have organised the proteins into clus-
ters that share evolutionary-related groups, also known as
families. In summary, the BERT model consists of 12-layers
with a hidden size of 512 units and eight attention heads,
leading to a ∼ 38M - parameter model. It was trained using
masked-token prediction [8]. Every layer of the BERT model
is frozen except for the last layer, which will allow the model
to be easily tuned to each task. The features produced by
the final layer of the model are then pooled to form the
vector representation for each protein. Initially the model
will encode a triplet of proteins, (xa, xp, xn), whereby xa,
xp, and xn denote the anchor, positive and negative proteins
respectively. The BERT model will then output the following:

a = f(xa)

p = f(xp)

n = f(xn)

(1)

D(a, p) = ‖a− p‖
D(a, n) = ‖a− n‖

(2)

L(a, p, n) =
1

2
{max (0,m+D(a, p)−D(a, n)}. (3)

In this example, we are applying inter-domain learning
because the weights of the BERT model are shared. The
model is represented by the encoding function f , which
is applied to each branch of the triplet network. Once the
BERT model has encoded the triplet, it is then passed
through one final dense, and L2-normalisation layer [36].
The triplet of encodings can then be used to train the BERT

Fig. 1: Overview of the Triplet-BERT Approach.

to rank the triplet based on the anchoring protein via the
triplet-loss (Equation. 3, where m = 0.1). Once the BERT
model has been fine-tuned, we will use its final generated
encodings to build a simple regression model to predict
the given properties of each task. As in past examples,
Gaussian process (GP) regression models (Matérn kernels
with ν = 5/2) [34] will be used to model the properties
along with the same train-test split for each task to remain
unbiased to the experiments carried out in previous work [48,
26, 24].

B. Tasks

To thoroughly evaluate the performance of using our
approach, we included four downstream tasks in this inves-
tigation that cover a range of potential properties in which
deep learning could be applied. These four tasks are the same
as those used in previous work [48, 26, 24].

III. RESULTS AND DISCUSSION

In this study, we began by evaluating the original BERT
model as an example of a pre-training strategy. This model
was used as a baseline to our investigation on a set of
downstream tasks. We then built on this approach by testing
the advantages of combining both pre-training and deep
metric learning to the same tasks, as shown in Table I.
Just as in past studies, we run a five-fold cross-validation,
whereby we adopted an eighty-twenty split of the gener-
ated triplets from the training data to train and validate
the performance of the model for each dataset. Doing so
provided a stable training setup during the fine-tuning stage
of development. Unsurprisingly, the triplet-tuned version
of the BERT model easily outperformed the original pre-
trained baselines along with the other examples that included
both CNN and Doc2Vec based models with an improved
mean absolute error (MAE) score in each task. Our results
indicate that the fine-tuning stage does alter the latent space
produced by the original model, and tailors it to each specific
downstream task improving the final representation of each
protein. The real value in applying pre-training is observed

4343



TABLE I: Results (MAE) for the four protein downstream tasks.

Model Encoding Vocabulary Size Absorption Enantioselectivity Localisation T50
BERT (Triplet) (Ours) Character 20 14.06 (1.257) 3.85 (0.586) 0.50 (0.03) 2.36 (0.139)
BERT (Non-Triplet) [33] Character 20 16.57 (1.765) 7.57 (0.767) 0.70 (0.043) 2.47 (0.121)
CNN (Triplet) [25] Character 20 17.14 (1.487) 5.93 (0.741) 0.63 (0.042) 2.58 (0.13)
CNN (Non-Triplet) [25] Character 20 25.28 (2.266) 8.01 (1.034) 0.67 (0.052) 3.32 (0.163)
Doc2Vec [27] Unigram 2000 26.41 (2.268) 6.77 (1.018) 0.65 (0.056) 2.98 (0.166)

4000 18.09 (1.740) 6.90 (0.777) 0.76 (0.041) 2.80 (0.13)
8000 20.92 (2.073) 8.58 (0.894) 0.86 (0.046) 2.59 (0.172)

16000 24.05 (2.013) 7.07 (0.964) 0.77 (0.052) 3.33 (0.201)
32000 21.98 (2.058) 9.53 (0.978) 0.76 (0.049) 2.96 (0.18)

Doc2Vec [27] BPE 2000 23.83 (2.323) 10.38 (1.06) 0.66 (0.049) 2.70 (0.184)
4000 20.80 (2.097) 9.76 (0.939) 0.67 (0.045) 3.01 (0.165)
8000 18.46 (1.852) 6.72 (0.808) 0.75 (0.046) 2.75 (0.13)

16000 20.64 (1.850) 6.08 (0.829) 0.73 (0.048) 2.76 (0.174)
32000 24.27 (2.193) 7.03 (0.95) 0.67 (0.052) 2.80 (0.175)

Doc2Vec [48] Tri-gram 8000 23.30 (2.129) 9.14 (1.018) 0.73 (0.047) 2.91 (0.198)
Doc2Vec [27] Character 20 46.08 (3.718) 12.55 (1.733) 0.81 (0.091) 4.32 (0.286)

Notes: Mean Absolute Error (MAE) between the actual test values and the predicted test values.

(a) Original BERT model (b) Triplet-BERT model

Fig. 2: A set of t-SNE and cluster plots for both versions of the BERT model, thereby visualising the correlations within
each learned embedding space (e.g. the number of modifications present and the functional property of each protein) (see
text for details).

when the model can successfully encode a protein without
any prior knowledge of biochemistry. Only during the pre-
training stage does the model begin to learn these complex
relationships between the amino acids within the protein
sequence. Through proper fine-tuning can these pre-trained
embeddings be improved by using deep metric learning to
model subtle mutations within a set of amino acids.

The encodings produced by both strategies are visualised
using a set of t-distributed stochastic neighbour embedding
(t-SNE) [29] plots along with cluster maps, as shown in

Figures 2a - 2b (with all t-SNE projections using a perplexity
of 30) were produced for each downstream task. Figure
2a depicts the encodings of the original BERT model for
each downstream task. While Figure 2b represented the
final encodings produced once the BERT model had been
tuned using our triplet network approach. By considering
the combination of both plots, it is easier to envision how
the BERT model perceives each protein sequence when using
either strategy and observe the contribution of each mutation
in the final feature vector representation.

4344



(a) (b)

Fig. 3: (a) A set of attention maps highlighting the importance of each amino-acid with three proteins from the peak
absorption task. The parent protein is outlined in green, and its least and most absorbent versions are outlined in blue and
red respectfully. Any modifications are represented by red lettering. (b) Average Attentions within the BERT model. The
least and most absorbent mutated versions of the parent protein are coloured blue and red respectfully.

For the absorption task, we see how there is less of an
order to the original encoding when compared to the triplet-
tuned counterparts, as shown in Figures 2a-2b. In Figure 2b,
it is far easier to determine which modifications will have
a more significant effect on the proteins absorption value
as the triplet-tuned encodings become more tailored to the
task. Figures 2a-2b presents the model’s ability to capture
even the most minor modifications to the original parent
protein, regardless of the length of the sequence. The high
correlations observed in the cluster map in Figure 2a reflect
the fact that all the modified proteins were based on one
protein and indicated two main clusters within the dataset.
However, in Figure 2b the cluster map based on the triplet-
tuned encodings provide a more detailed depiction of how the
proteins are correlated to one another as we observe smaller
sub-clusters within the dataset.

In the enantioselectivity task, we again see the best per-
formance from the triplet-BERT model, as shown in Table
I. Still, both versions of the BERT model were capable of
detecting any modifications present within the parent protein.
However, when considering the cluster maps in Figures 2a-2b
we can see the triplet tuned encodings provide more distinct
clusters when compared to the originals. In Figures 2a-2b,
we observe that the triplet encodings incorporate information
with regards to the measured property and the modifications
present within the protein. In the absorption task, we notice
that an increase in the number of modifications could lead to
either an increase or decrease in absorption values. However,
for enantioselectivity, the more modifications that are present
in the protein, the higher its expected e-value will be for this
particular dataset.

When examining the plasma membrane localisation task,
we again observed the best results from the triplet-BERT
encodings, as shown in Table I. When visualising both sets
of encodings in Figures 2a-2b, we can see how the BERT
model easily clusters the three families tested in this specific
task. Interestingly in Figure 2b, the triplet encoding clusters
these families further away from one another. With smaller
sub-clusters appearing for the proteins that have a higher

localisation value. The number of mutations appears to have
an opposite effect to that of absorption and enantioselectivity.
From Figures 2a-2b, we see that the fewer mutations present
within this protein leads to a higher overall localisation value.
Just as in the case of the absorption and enantioselectivity, we
again notice a far sharper cutoff between suspected groups
within the data when using the triplet encodings for Figure
2b. In considering the cluster maps in Figures 2a-2b, it
becomes easier to recognise which parent protein is more
or less receptive to the task as the model becomes better at
detecting the relevant modifications.

In the final task, we again observed the triplet-BERT
model producing the best encodings for modelling ther-
mostability (i.e. T50) values, as outlined in Table I. When
we visualise the encodings produced by each strategy in
Figures 2a-2b, the proteins that possess the highest T50
values are clustered into the centre of each plot. Unlike in the
localisation task, the encodings produced by the BERT model
for the thermostability task are not initially separated into
three distinct clusters based on the parent proteins. Instead,
we see a series of smaller groups with most of the proteins
with high thermostability values congregating in the centre.
Similarly to absorption and enantioselectivity, the number of
mutations present in the protein is positively correlated to the
thermostability value. Similarly to the localisation task, when
we consider the cluster maps in Figures 2a-2b, we can see
that triplet-BERT model is better at clustering the proteins
with higher thermostability values together.

To reinforce the utility and interpretability of this ap-
proach, we have also included a set of plots in Figure 3
that focus on a few examples from the peak absorption task.
In Figure 3a, we have mapped the attention weights of the
final layer onto the parent protein and two mutated (i.e. the
most and least absorbent) versions of this protein. In Figure
3a, we can see which parts of the protein and what specific
mutations (i.e. red lettering) contribute the most to the final
vector representation. Moreover, in Figure 3b, by taking an
average over each head of the BERT model, we can ascertain
the critical parts of the protein within each layer.
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IV. CONCLUSION

In this work, we have illustrated how pre-training can be
utilised for robust modelling of a protein’s functional prop-
erties, and with some additional fine-tuning through the use
of a triplet-network, these models can be further improved.
From the results, the triplet-BERT network produced more
detailed encodings in each downstream task when compared
to the original pre-trained BERT encodings and previous
baselines. When using both strategies of pre-training and
metric learning, we observed state-of-the-art results for all
downstream tasks when compared to using just one of these
approaches. This investigation has shown that deep learning
can still be applied to produce state-of-art regardless of the
limited number of examples within the dataset. More specif-
ically, we have highlighted the potential for pre-training and
metric learning within the field of proteomics. By visualising
the intermediate features generated by the BERT model, we
also provided insight into the function of a protein as we
measured the impact of specific modifications featured in all
four downstream tasks.

As modern sequencing technology continues to improve
proteomics to provide more data on the properties of a
protein, it will become paramount to link these extensive
resources to specific tasks through the use of techniques
such as pre-training and metric learning. In future work,
we postulate that subword encodings could improve the
encodings generated during pre-training by the BERT model.
This will allow the network to learn a far more substantial
vocabulary for each protein and will reduce the overall
sequence length of the protein, which in turn will reduce
the time and cost required to perform pre-training.
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