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Abstract—Understanding the interactions between
novel drugs and target proteins is fundamentally
important in disease research as discovering drug-
protein interactions can be an exceptionally time-
consuming and expensive process. Alternatively, this
process can be simulated using modern deep learning
methods that have the potential of utilising vast
quantities of data to reduce the cost and time required
to provide accurate predictions. We seek to leverage a
set of BERT-style models that have been pre-trained
on vast quantities of both protein and drug data. The
encodings produced by each model are then utilised
as node representations for a graph convolutional
neural network, which in turn are used to model the
interactions without the need to simultaneously fine-
tune both protein and drug BERT models to the task.
We evaluate the performance of our approach on two
drug-target interaction datasets that were previously
used as benchmarks in recent work.
Our results significantly improve upon a vanilla

BERT baseline approach as well as the former
state-of-the-art methods for each task dataset.
Our approach builds upon past work in two key
areas; firstly, we take full advantage of two large
pre-trained BERT models that provide improved
representations of task-relevant properties of both
drugs and proteins. Secondly, inspired by work in
natural language processing that investigates how
linguistic structure is represented in such models,
we perform interpretability analyses that allow us to
locate functionally-relevant areas of interest within
each drug and protein. By modelling the drug-
target interactions as a graph as opposed to a set
of isolated interactions, we demonstrate the benefits
of combining large pre-trained models and a graph
neural network to make state-of-the-art predictions
on drug-target binding affinity.

I. Introduction
In recent years, deep learning has been used to

model Drug-Target Interactions (DTIs) as it is ideally
suited to handle large datasets without requiring feature
engineering. By using deep learning to map out the
drug-target landscape, one can quickly identify the
proteins that are targeted by each drug – thereby
accelerating drug discovery during clinical trails [33].
Initial applications of machine learning models posed this
as a classification problem due to the variability between
each interaction pair [3, 5, 25]. However, these early
approaches do not provide enough information about
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the actual binding affinity value, which is troublesome
when one seeks to learn the potency of a particular drug-
target pair. Deep learning now plays an important role
in determining patterns in complex drug-target systems.
Applications of deep learning are becoming ubiquitous
in drug-drug interaction modelling [32, 22], as well
as forming predictions for protein-protein interactions
[39, 28, 42], and the identification novel drug-target
interactions [43, 45, 12, 16, 24].

In recent work, the focus has moved away from
developing classification models. Instead, the drug-
target identification problem has been formulated as
a regression task that requires the model to predict
the binding affinity value directly. Building a regression
model has the potential to rank therapeutic drugs,
which makes it more practical at identifying optimal
compounds when a broad set of drugs are being
analysed. These measured affinity values may include
measurements such as dissociation constant (Kd),
inhibition constant (Ki) or the half-maximal inhibitory
concentration (IC50).

In this paper, we will consider a BERT (Bidirectional
Encoder Representations from Transformers) [10, 31]
model, and a RoBERTa (Robustly Optimized BERT
Pretraining Approach) [23] model that have been pre-
trained on a large corpus of protein and drug data
respectfully. During training, both models are used to
provide node embeddings to the graph convolutional
neural network (GCN) that is applied to model the
interactions between the drug-target pairs. Our approach
improves upon past work in two key areas; firstly,
our method capitalises on two pre-trained BERT style
networks, which provide robust embeddings for each drug
and protein. These models can also be used to visualise
the critical areas of interest within each drug-target
pair. Such insights will benefit the field of computational
biology as it becomes easier for the end-user to distil
the knowledge from these models. Secondly, our method
implements a GCN to model the interaction between
individual pairs as opposed to past work that use a simple
multilayer perceptron (MLP) to produce a prediction for
the binding affinity value of each interaction.

In most cases, the total number of unique drugs
and proteins tested during these experiments is limited,
which does not provide a complete depiction of how a
particular drug or target protein might operate under
the same experimental conditions. We seek to address
these issues through the use of pre-training and graph
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neural networks. End-to-end, our approach will be able
to encode any drug-protein even if it is not present
within the original datasets. By implementing this style
of modelling our approach will be able to analyse and
determine the essential features within each protein and
drug sequence without causing the models to overfit to
the limited number of labelled examples observed during
training.

II. Related Work
Previous machine learning methods relied on scoring

functions, and a series of feature-engineered steps to
transform the original drug-protein pair before producing
a final prediction [2, 21, 34]. These approaches did
not generalise well, as the machine learning models
were optimised on a feature set engineered from only
on a few observations. This limited scope provided
less information about the raw interaction between the
drug and the protein [13]. Examples include Kronecker
Regularised Least Squares (Kron-RLS) [26] algorithm
that utilised drug similarity information and a Smith-
Waterman similarity representation [37] of each target
protein to model interaction values by formulating it as a
regression problem [37]. This kernel approach performed
well, given its lack of complexity, which in turn stopped
the model from overfitting during training. Later, He et
al. designed a gradient boosting machine learning model
[6] that was trained using network-based features from
the observed drugs, targets and drug-target interactions
from each dataset [16]. The training data was based on
the drugs and targets, which formed the nodes of the
graph, while the binding affinity values represented the
edges. The Simboost algorithm was a significant jump
from the Kron-RLS as it included a far more extensive
and rigorous feature set, while also utilising a more
sophisticated machine learning algorithm. However, both
methods share the same constraint as they are only
capable of modelling a summarisation of the raw data
available for the drug-target interaction.

Recent work in the subfields of natural language
processing (NLP) [29, 30, 10], and computer vision
[20, 41, 38], has produced state-of-the-art results using
deep learning approaches, and have recently revealed the
value of pre-training large train models before tacking
specific tasks. One of the main drawbacks to applying
deep learning is the sacrifice of interpretability, as it
becomes increasingly challenging to distil the knowledge
of the model. Öztürk et al. designed a deep learning
model for a set of DTI regression tasks that aimed to
predict the binding affinity scores by utilising a set of
convolutional neural networks (CNN) [24]. The proposed
model was comprised of two individual three-layer CNNs
that were adopted to encode the drug (i.e. SMILES
strings) and target (i.e. protein sequences) respectively.
The final features produced by each CNN were then max
pooled and concatenated together before finally being
passed through a multi-layer perceptron (MLP) to form

a prediction for the binding affinity. Since the DeepDTA
model incorporates CNN models to encode both the drug
and the protein, it could only capture local dependencies
within the SMILES strings and protein sequences.

Later, Shin et al. improved upon the DeepDTA model
by replacing the drug CNN component with a pre-trained
character transformer, that unified both transformer and
convolutional neural networks [36]. The drug transformer
was pre-trained using the PubChem database and was
a clear improvement over a CNN as it was better at
capturing long-range dependencies in the drug sequence.
Such a characteristic is vital to model intermolecular
interactions properly, as a deep learning model should
be able to incorporate all the information about the
structure of both the drug and the protein. However, the
Shin et al. model still included a set of convolutional
layers designed to extract features from the protein, and
therefore suffered at accurately modelling the complete
sequence of amino acids [36]. It should be noted that
the transformer within the Shin et al. model required
further fine-tuning to each interaction dataset before it
could produce better results over the DeepDTA model
[36].

Graph convolutional neural networks (GCNs) have
also been used to encode the molecular graph, whereby
the atoms are the nodes, and the bonds are the edges
of the graph. Duvenaud et al. [11] implemented a GCN
model to replicate circular fingerprints, which could
extract relevant molecular features. Kearnes et al. [18]
likewise presented a molecular graph convolutional model
for learning small molecules. Coley et al. [8] used a
GCN based approach to model the interactions between
organic compounds to predict the final products. As an
example of white-box deep learning, Kearnes et al. were
able to gain insight and derive knowledge from the
model’s predictions, which was later validated by experts
[18]. Although the model in [8] was tailored to modelling
drug reactions, it could be modified to integrate target
protein information so that the most active drugs can be
determined. These applications display the potential for
future applications of deep learning within the virtual
screening process.

III. Materials and Methods
The modelling scheme used in this paper is outlined

in Figure 1. Firstly each drug-protein pair is encoded
into a vector representation by the pre-trained BERT
and RoBERTa models. Our work improves upon past
work by employing both of these state-of-the-art pre-
trained models to provide robust representations for
each drug and protein. The protein BERT model [10]
was initially pre-trained and published by Rao et al.
[31] with masked-token prediction of protein sequences
available in the Pfam database [14]. The protein BERT
model consisted of twelve-layers with a hidden size
of 512 units and 12 attention heads. Each protein is
encoded using a standard variable encoding scheme with
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Fig. 1: Overview of the BERT-GCN Approach.

the complete vocabulary containing a total of thirty
characters, including the special characters.

The drug RoBERTa model [23] was initially pre-
trained by Chithrananda et al. [7] on 250,000 Simplified
Molecular Input Line Entry System (SMILES) strings
from the ZINC15 database of drug-like molecules [17],
again it was pre-trained using masked-token prediction
[7]. From the raw SMILES strings, the drugs were
tokenised using a Byte-Pair Encoder (BPE), via the
Huggingface tokeniser library [44], which is one of the
most commonly applied subword encoding algorithms
in natural language processing. Subword algorithms
such as BPE can decompose rare words into frequently
occurring subwords, which allows DNNs to model large
vocabularies without hindering the model’s performance
with out-of-vocabulary words. In our context, the
subword encoding algorithm breaks the SMILES string
into commonly occurring subsequences, and it is then
able to find the most optimal vocabulary by iteratively
merging symbols within the original SMILES string
until the best segmentations was determined [35]. A
set of additional tokens were also included within this
vocabulary (i.e. to denote special tokens for unknown
characters, padding, separation and masked characters)
such as to avoid unknown tokens during the pre-training
stage.

A. Modelling Scheme
As in previous work [16, 24], we will model the drug-

target interaction as a regression task, whereby the model
must produce predictions of the binding affinity scores.
As mentioned above, our approach adopts a pair of pre-
trained BERT models that contain six and twelve layers
for the drug and protein model respectively. In both
models, these layers are then followed by a final average
pooling layer to produce a vector representation for each
drug and protein (Figure 1, step 1).

In addition to the pre-trained BERT models, our
approach includes graph convolutional layers (GCN)
layers. Unlike past examples, we do not truncate either

drug or protein when producing the final encodings. This
will allow the graph neural network to learn a complete
representation of each drug and protein, and thereby
avoid training our algorithm with excessive amounts of
padding. Once the model has collected local features
based on the original BERT embeddings followed by the
output of each of the GCN layers, these final features are
then concatenated once more to form the drug-protein
interaction pairs (Figure 1, step 2). Residual connections
are employed between each GCN layer to improve
training and the overall performance of the model. These
interaction features are then passed through a set of
dense layers to reduce the final interaction features into
a prediction for the binding affinity scores (Figure 1, step
3). Mean squared error (MSE) is used as a loss function
as we optimise our model via the Adam optimisation
algorithm [19], with the default learning rate of 0.001.
Once the network has been suitably trained, it can
then encode each drug-protein pair and analyse how the
observed interactions dictate the affinity values.

B. Tasks
Following [24], our approach was evaluated on two

separate benchmark datasets, the Davis kinase dataset
[9] and the KIBA dataset [40], as summarised in Table
I. For both datasets, the drugs were represented in
the SMILES string format and were downloaded using
their individual PubChem CIDs to query the Pubchem
compound database [4]. For the protein sequences, the
accession number of each protein was used to locate and
extract the protein sequence from the UniProt protein
database [1]. The Davis dataset includes interactions
between a subset of selectivity assays from a kinase

TABLE I: Summary of the two downstream tasks
(Adapted from [24]).

Proteins Drugs Interactions
Davis (Kd) 442 68 30,056
KIBA 229 2111 118,254
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TABLE II: Results for the two downstream tasks.
Dataset Method MSE (std) CI (std) r2

m (std) AUPR (std)
Davis BERT-GCN (Ours) 0.199 (0.003) 0.896 (0.002) 0.741 (0.002) 0.806 (0.007)

BERT-MLP (Ours) 0.311 (0.009) 0.862 (0.004) 0.589 (0.022) 0.721 (0.009)
MT-DTI [36] 0.245 0.887 (0.003) 0.665 (0.014) 0.730 (0.014)
DeepDTA [24] 0.261 0.878 (0.004) 0.630 (0.017) 0.714 (0.010)
SimBoost [16] 0.282 0.872 (0.002) 0.644 (0.006) 0.709 (0.008)
KronRLS [27] 0.379 0.871 (0.001) 0.407 (0.005) 0.661 (0.010)

Kiba BERT-GCN (Ours) 0.149 (0.001) 0.888 (0.001) 0.761 (0.009) 0.838 (0.003)
BERT-MLP (Ours) 0.282 (0.005) 0.803 (0.002) 0.580 (0.008) 0.748 (0.008)
MT-DTI [36] 0.152 0.882 (0.001) 0.738 (0.006) 0.837 (0.003)
DeepDTA [24] 0.194 0.863 (0.002) 0.673 (0.009) 0.788 (0.004)
SimBoost [16] 0.222 0.836 (0.001) 0.629 (0.007) 0.760 (0.003)
KronRLS [27] 0.411 0.782 (0.001) 0.342 (0.001) 0.635 (0.004)

protein family and a set of inhibitors, which were
measured using the dissociation constant (Kd) across 442
unique proteins and 68 unique drugs. As in previous work
[16, 24], we use the log-transform of the Kd values. As
the majority of the Davis dataset is inactive, it leads
to a highly unbalanced distribution as a majority of
the interactions either have such a low binding affinity
value (i.e. Kd > 10, 000 nM) or was not observed in the
primary screen [27].

The KIBA dataset was filtered during the Simboost
study to yield a total of 229 unique proteins and 2,111
unique drugs [16]. This dataset was designed to cover
the bioactivity of specific kinase inhibitors from various
studies, which were combined to include interactions
based on Ki, Kd and IC50 values [40]. For more
information on how the KIBA scores were generated,
please see citations [16].

The value of using a GCN approach to model the drug-
target interactions as opposed to fine-tuning both BERT
models simultaneously is realised when we consider the
typical sequence length of either drug or protein. In the
Davis dataset, the maximum drug length is 103 (average:
64), and a maximum protein length is 2,549 (average:
788). In the KIBA dataset, the maximum drug length
is 590 (average: 58), and the maximum protein length
is 4,128 (average: 728). To fine-tune BERT models of
this size would become very computationally expensive
as a considerable amount of padding would be required
during this fine-tuning stage, which would increase the
time required to optimise both models to the interaction
task.

IV. Results and discussion

To properly evaluate the predictive performance of
our model, we calculated the mean square error (MSE),
Concordance Index (CI) [15], r2

m index, and Area
Under Precision-Recall (AUPR) (i.e. utilised for binary
predictions) scores for all predictions, as shown in Table
II. To calculate the AUPR scores for either dataset,
the binding activity values were binarised by selecting a
particular threshold value. Following previous evaluation
using these datasets for the SimBoost and DeepDTA
models [16, 24], a threshold value of 7 was used for

binarising pKd values in the Davis dataset and a value
of 12.1 was used for the KIBA dataset.

For a fair comparison to the previous models, we
also performed a five-fold cross-validation procedure
using only the training data to validate the performance
of our approach. We then averaged the test scores
across all five folds on the same external test set as
was used for previous models. Table II also includes
the standard deviation for each metric across all five-
folds for both datasets. In some cases, the standard
deviation is missing from previous models as it was not
provided in the literature. To provide an unbiased final
measure of performance in each dataset, we evaluated
our approach on the same independent test set that was
used in previous studies. We then tested our BERT-
GCN approach against a vanilla BERT approach, which
removes the GCN layers and only uses a set of fully
connected layers to model the interaction (MLP-BERT).
In addition to the DeepDTA and SimBoost models, we
also compared our model to the KronRLS algorithm,
which like SimBoost is based on employing similarity
matrices for both drugs and proteins as input features to
the model [27]. We also examined the MT-DTI approach
that learned only drug sequence representation with a
BERT block and retained a similar CNN to encode each
protein, much like the DeepDTA model [36].

When the vanilla BERT encodings were used as inputs
to an MLP, there appeared to be no performance benefits
from using these large pre-trained networks. This result
is unsurprising as neither the protein BERT model nor
the drug RoBERTa model was fine-tuned simultaneously
to model drug-protein interactions. As mentioned, given
that protein and drug sequences can be considerably
long, it would have been far too computationally
expensive to run both models to perform fine-tuning.
However, to capitalise on the pre-training that was
conducted for both BERT networks, we were motivated
to find a solution that used both pre-trained models
but was also computationally feasible to the end-user.
To improve upon the previous pre-trained results, we
tested the combination of using these pre-trained models
in coordination with a set of GCN layers, which would
then model the interactions between the proteins and
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drugs. This method outperformed all baseline methods
with the lowest average MSE scores for both the Davis
and Kiba datasets and likewise achieving the highest CI,
r2

m and AUPR scores on both datasets.

V. Conclusions
In this paper, we proposed a deep learning model that

is capable of accurately predicting drug-target binding
affinity values. By adopting a pair of pre-trained BERT
models along with and a graph convolutional neural
network, and without manually engineering any features
about the biochemistry of these interactions, this model
was able to encode the sequence representations of both
drugs and targets to produce state-of-the-art results.
We evaluated our approach on two benchmark datasets
and compared our model to previous state-of-the-art
machine learning and deep learning baselines. Our results
indicated that the predefined features produced by the
BERT models alone could not sufficiently be applied
to represent a drug-target interaction. However, when
additional GCN layers were used to learn each interaction
as a component of a more extensive network, the
performance increased significantly compared to baseline
methodologies for both datasets. Without the need
to directly fine-tune both BERT models to the DTI
task, we were able to improve performance by using a
graph neural network to overcome this computationally
expensive process.

This study provides a method that utilises state-of-
the-art pre-trained models to produce the most accurate
interaction network for binding affinity prediction.
Our approach not only saves time and computational
resources with regards to training, but it also provides
the best overall performance when compared to past
state-of-the-art approaches that required additional
feature engineering. In future work, we aim to utilise
better pre-trained models that apply subword encoding
algorithms during pre-training, along with building an
interpretable graph neural network system that operates
on these pre-trained encodings to provide improved
predictions for novel interactions.
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