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Abstract— One of the key challenges when developing a
predictive model is the capability to describe the domain
knowledge and the cause-effect relationships in a simple way.
Decision rules are a useful and important methodology in this
context, justifying their application in several areas, particularly
in clinical practice. Several machine-learning classifiers have
exploited the advantageous properties of decision rules to
build intelligent prediction models, namely decision trees and
ensembles of trees (ETs). However, such methodologies usually
suffer from a trade-off between interpretability and predictive
performance. Some procedures consider a simplification of ETs,
using heuristic approaches to select an optimal reduced set
of decision rules. In this paper, we introduce a novel step to
those methodologies. We create a new component to predict if a
given rule will be correct or not for a particular patient, which
introduces personalization into the procedure. Furthermore, the
validation results using three public clinical datasets suggest
that it also allows to increase the predictive performance of the
selected set of rules, improving the mentioned trade-off.

I. INTRODUCTION

Physicians usually incorporate clinical decision rules
(CDRs) in several domains of their practice, such as bedside
diagnostic or therapeutic choices. CDRs appeared as a tool
to help the decision-making of the clinical staff, reducing its
uncertainty and making it more evidence-based [1]. In the
last few decades, several machine learning (ML) methods
have been proposed as decision support systems in almost
every medical specialties, where they have been shown to
achieve high performances [2]. However, the majority of
those models are often seen as a “black-box” with a lack of
explainability capabilities, which limits their use in medicine.
In fact, despite a large investment in the development of
novel ML applications in medical areas, its translation to the
daily clinical practice is still very limited [3].

Decision trees (DTs) are widely acknowledged as a very
interpretable ML approach, and therefore a useful solution
when the scenario requires a deep understanding of the
generated model [4], such as the medical cases. DTs present
several features that make them appealing from the inter-
pretability point of view, such as: 1) they mimic the human
reasoning, incorporating a combination of decision rules; 2)
the IF-THEN nature of such rules allow to easily extract
domain knowledge from the cause-effect relationships; 3) the
tree-like visual representation makes the overall classification
process easy to understand. Despite these characteristics,
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DTs typically present a worse predictive performance when
compared to more complex ML methodologies.

In order to overcome that disadvantage, ensembles of
trees (ET) were proposed. ET are based on the idea that
the combination of several weaker classifiers (several DTs)
achieves better performance than a single classifier (one DT).
Random Forest (RF) [5], a tree ensemble methodology, is
one of the most widely applied classifiers as it often assures
a high performance [6]. In RF, multiple DTs are built, each
one using a randomly selected subset of the whole set of
features, and (optionally) also a subset of the whole set
of samples. The outputs of the individual trees are then
combined to produce the final output. A DT is easy to
interpret individually, as long as its dimensions (number
of rules and length of each rule) keeps low. However, to
study several (hundreds or thousands) DTs simultaneously
is unfeasible for the final user (e.g. physicians). Thus, RFs
are typically considered as “black-box” models.

Therefore, there is a trade-off between interpretability and
accuracy in such rule-based ML methodologies. In order to
overcome it, some approaches have been proposed, mainly
suggesting techniques to improve the interpretability of the
generated ET [4][7][8]. A group of procedures aims at
simplifying the ET by decomposing the respective several
individual DTs into a set of decision rules. Then, they select
a sparser set of the best rules, based on heuristics such as
LASSO [9], hill climbing [10] or quadratic programs [11].
These approaches allow to obtain a set of important decision
rules directly extracted from the ET, which is simpler to
analyze than a group of DTs, improving the interpretability.
Even so, those methods often select a final set of several
dozens of rules, which is still a high amount of rules for an
easy and fast interpretation of the output and the respective
extracted knowledge in the clinical practice. Furthermore, the
final set of rules is usually applied uniformly to all patients,
i.e. the decision rules have the same weight to all samples.

In this study, we propose an approach that predicts the
correctness of each one of the decision rules to each patient,
enabling to use a smaller set of decision rules to obtain the
same performance of state-of-the-art methods. The goal is to
promote a novel methodology towards a more interpretable
and personalized set of decision rules, while keeping a good
predictive ability, improving its usability in the clinical field.

II. METHODS
A. Generation and extraction of decision rules

A decision tree can be converted to a set of decision rules.
An individual decision rule corresponds to a path from the
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roof of the tree to its leaf. The condition of the rule, i.e. the IF
segment, is defined by the set of conditions in that path. The
prediction, i.e. the THEN segment, is defined by the class
attributed to the leaf. Thus, there are as many rules as leaves
in the tree. Furthermore, assuming a binary classification,
we may consider that if the condition part of a given rule
is not verified, then at that decision level the rule leads to
a prediction of the opposite class (represented by an ELSE
segment). Fig. 1 exemplifies a very simple DT. From that
DT, the following decision rules can be extracted:

1) IF x1 > 0.5, THEN y1 (ELSE y2).
2) IF x1 ≤ 0.5 AND x2 = false, THEN y2 (ELSE y1).
3) IF x1 ≤ 0.5 AND x2 = true, THEN y1 (ELSE y2).

x1 > 0.5

x2 = true
y1

y1y2

yes

yesno

no

Fig. 1. Example of a decision tree. The split nodes are represented by the
blue square boxes, and the leaf (or terminal) nodes are represented by the
grey round boxes. x1 and x2 are two attributes (features), and y1 and y2 are
two arbitrary classes (labels).

We take advantage of the random forest ability to generate
a large group of DTs, and then get a set of decision rules as
aforementioned. For interpretability issues, it is not enough
to have decision rules, they must also be easy to understand,
which implies those rules should be short. Therefore, in this
study, we set to 3 the maximum depth of each DT, i.e. the
condition part of each rule is composed of at most 3 elements
(two AND connections).

B. Selection of a set of the best decision rules

In this study, the decision rules extracted from the indi-
vidual trees of the RF are combined into a single set of
rules. Then, we start by removing duplicated rules. Further,
a subset of M decision rules is obtained using a logistic
regression model with L1-regularization (LASSO), similar
as performed in [9], as LASSO is a simple and intelligible
heuristic selection method.

In this LASSO step, the input is a NxP matrix, where N is
the number of samples and P is the number of decision rules
extracted from the RF, and the output is the Nx1 outcome
vector (observed outputs). The NxP matrix is binary, with
a value of 1 if the rule condition (IF-part) of the rule p is
verified to the patient n, and a value of 0 otherwise. Let us
consider the rules of the DT of Fig. 1. If a given sample
has the values x1 = 0.3 and x2 = true, only the IF-part of
rule 3 is verified. Thus, the input vector for such patient and
rules will be condition veri f ied([r1 r2 r3]) = [0 0 1]. This
procedure is applied to the N patients, taking into account
the P rules, creating then the NxP matrix.

Therefore, the LASSO is applied as a rules selection
procedure, shrinking towards 0 the coefficients of the rules
that are least relevant to the output prediction as well as the
ones of correlated rules. In our approach, we then obtain a
subset of M (relevant and uncorrelated) rules by selecting the
ones that present the M highest LASSO regression coefficient
values. The M value can be defined by the user. For a better
generalization ability, a 3-fold cross-validation LASSO is
applied for that task.

C. Prediction of the correctness of each rule

In this study, we aim to classify each rule for each sample,
i.e. to predict when a rule will give a correct output or not.
In order to accomplish that goal, we create a classification
model for each rule. More specifically, we train a model
giving as features the variables used by all the selected rules,
and as label a binary vector with a value of 1 if the rule gave
a correct output and a value of 0 if the rule gave a wrong
prediction. For example, considering the DT of Fig. 1, if
a given sample has the values x1 = 0.3 and x2 = true, the
predictions of the rules will be:

• rule 1: y2 ; rule 2: y1 ; rule 3: y1
So, if we assume that the true output is y1, rule 1 is

incorrect (label=0) and rules 2 and 3 are correct (label=1).
Therefore, if e.g. 5 rules are selected (M=5), 5 different
binary label vectors will be created (with the information
about this correctness for all the samples for each rule).
Consequently, 5 classifiers are trained, each one to predict the
individual rule correctness. The features used to train such
classifiers are the original risk factors used by that selected
rules. Thus, if those 5 rules use a total of K features, each of
the 5 classifiers will have as input the NxK predictors matrix.
Any classification algorithm can be used to predict the rule’s
correctness. In this study, a LASSO model was considered.

So, we not only extract and selected a subset of rules from
an ET, as in state-of-the-art methods, but we also attempt
to forecast if a given rule should be (or not) applied to a
particular patient. This procedure introduces personalization
to the methodology as the rules will be applied differently
and more properly for each patient, which can contribute
to the improvement of the individual predictions. Thus, this
step is a novelty in relation to literature approaches, which
apply the decision rules uniformly to all patients.

D. Computation of the probability of each class

For each new (validation) sample, two vectors of dimen-
sion 1xM are then generated, composed of binary values.
The predicted rule’s output informs if a given rule classifies
the patient as having a disease (1) or not (0). The predicted
rule’s correctness informs if a given rule is expected to be
correct (1) or not (0) for that patient. Table I presents an
example of the vectors obtained for a given new sample,
using 3 rules.

In order to generate the final output (probability that the
sample is a positive class - e.g., the probability the patient
has a given disease), the standard methodologies only do an
averaging of the set of the M selected decision rules, usually:
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TABLE I
PREDICTIONS OBTAINED FOR A NEW SAMPLE, USING A SET OF 3 RULES.

Rule 1 Rule 2 Rule 3
Rule’s output prediction 1 0 1
Rule’s correctness prediction 1 1 0

Probability(class = 1) =
1
M

M

∑
i=1

rule out puti. (1)

For the sample exemplified in Table I, those approaches
would give a positive class probability of ∼0.66, because 2
rules out of 3 predict a positive class.

In contrast, in our approach, we also take into account
the information about if each rule is expected to be (or not)
correct for a given patient, i.e. the information of the last row
of Table I. More specifically, the probability that a sample
belongs to the positive class is given by a weighted average,
which is personalized for each patient:

Probability(class = 1) =
∑

M
i=1 rule out puti ·weighti

∑
M
i=1 weighti

, (2)

We could do only a simple averaging of the rules predicted
to be correct, giving a weight of 1 if the rule is predicted
to be correct, and a weight of 0 otherwise. However, it may
happen that for some samples, none of the M selected rules
is predicted to be correct, and thus no rule would be available
to predict the final outcome. Therefore, we assume a weight
of 2 if the rule is predicted to be correct, and a weight
of 1 otherwise. This implies that the methodology can be
generalized to all scenarios. Furthermore, it means that all
the rules are considered but the ones predicted to be correct
for that patient contribute twice more for the final output
than the others. Therefore, for the example of Table I, rules
1 and 2 have a weight of 2, and rule 3 has a weight of 1.
Thus, the probability of the positive class will be 0.6. Surely,
such weights can be adjusted or optimized by the user.

E. Validation of the proposed approach

The proposed approach was validated in three public
clinical datasets. Two of them are from UCI Machine Learn-
ing Repository (https://archive.ics.uci.edu): Heart Disease
(prediction of presence/absence of heart disease) and Breast
Cancer Wisconsin Diagnostic (prediction of benign/malign
diagnosis of breast cancer). The third one is from Kaggle
(https://www.kaggle.com/ ): Pima Indians Diabetes Database
(prediction of presence/absence of diabetes disease). The
datasets will be designated as Heart, Breast and Diabetes, re-
spectively. Heart has some categorical variables with missing
data, which was replaced by the most frequent value of the
corresponding feature. A 10-times repeated 5-fold stratified
cross-validation was used as the validation procedure.

III. RESULTS

The ability of the proposed approach to correctly classify
the data into positive (presence of disease) or negative

(absence of disease) samples was assessed through the area
under the ROC curve (AUC). Those results are presented
in Table II. The results of the proposed methodology are
presented for different sets of selected rules, i.e. for different
M values. More specifically, sets with the 3, 5, 10, 15 and
20 best decision rules were considered, as selected by the
LASSO approach. The initial set of P rules was obtained by
building a RF with 100 DTs. The results are also compared
with two standard rules-based machine learning models:
random forest and decision tree. For the RF methodologies,
two versions are considered: one where the RF and its
trees can grow without any constrictions; and a simpler
and more interpretable version, where the RF can have at
most 5 trees, each one with a maximum depth of 3. The
parameters of those RF and DT models were optimized for
each prediction task, using a cross-validated technique where
the best parameters were chosen and applied in the final
model.

TABLE II
AREA UNDER THE ROC CURVE (AUC) VALUES FOR THE PROPOSED

APPROACH AND COMPARISON MODELS. THE RESULTS PRESENTED ARE

RELATED TO THE MEAN AND ITS 95% CONFIDENCE INTERVAL.

Heart Breast Diabetes
Random forest (no constraints) 0.90±0.01 0.99±0.00 0.83±0.01
Random forest (simpler) 0.87±0.01 0.98±0.00 0.79±0.01
Decision tree 0.79±0.02 0.94±0.01 0.73±0.01
Proposed approach (3 rules) 0.82±0.02 0.97±0.00 0.70±0.02
Proposed approach (5 rules) 0.85±0.01 0.98±0.00 0.74±0.02
Proposed approach (10 rules) 0.89±0.01 0.99±0.00 0.79±0.01
Proposed approach (15 rules) 0.90±0.01 0.99±0.00 0.80±0.01
Proposed approach (20 rules) 0.90±0.01 0.99±0.00 0.80±0.01

Table III provides additional information, presenting the
cross-validation mean number of rules used by the RF and
DT methods, in order to compare it with the amount used
by our approach (3 to 20 rules).

TABLE III
MEAN NUMBER OF RULES USED BY THE RANDOM FOREST AND

DECISION TREE MODELS.

Heart Breast Diabetes
Random forest (no constraints) 1230 1105 969
Random forest (simpler) 27 29 26
Decision tree 24 18 21

Furthermore, in Fig. 2, the performance of the models fol-
lowing our approach is presented, i.e. final prediction based
on the mean of the rules output weighted by its predicted
correctness (2), versus the performance considering only a
simple mean of the rules, as in the standard methodologies
(1). The weighted mean values are represented by solid lines
and the baseline mean values by dashed lines.

Finally, we present an example of a selected subset of
decision rules. More specifically, a set for M=3 used in the
outcome prediction for the Diabetes dataset:

1) IF nr pregnancies ≤ 6.5 AND [glucose]≤ 124.5 AND
age ≤ 34.5, THEN no-diabetes (ELSE diabetes).
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2) IF age ≤ 26.5 AND BMI ≤ 37.2 AND
tricep skin tickness ≤ 28.5, THEN no-diabetes
(ELSE diabetes).

3) IF blood pressure ≤ 69.0 AND [glucose] > 119.5
AND diabetes pedigree ≤ 0.23, THEN diabetes
(ELSE no-diabetes).

3 5 10 15 20
Number of rules

0.5

0.6

0.7

0.8

0.9

1.0

AU
C

Heart weighted mean
Heart mean
Breast weighted mean
Breast mean
Diabetes weighted mean
Diabetes mean

Fig. 2. Area under the ROC curve (AUC) values for the obtained set
of rules, considering a simple mean (standard approaches) and a weighted
mean (proposed approach) of their predictions, for the validation datasets.

IV. DISCUSSION
As we may observe in Table III, the non-constrained RF

models (first row) consider a large number of decision rules
to generate their outputs. In fact, it would be unfeasible
for a physician to analyze thousands of rules in order to
interpret the models generated by the RF. Consequently, that
is a critical limitation for its application in clinical practice.
Further, as presented in Table II, a significant drop in the
predictive performance when we use a simpler RF (at most
5 trees with a maximum depth of 3) or a DT instead.

In Tables II and III, it is possible to observe that the
proposed approach achieves better AUC than decision trees
using at most 5 rules (while DTs use on average 18 to
24 rules), and equivalent or better AUC than the simpler
random forest using at most 10 rules (while simpler RF uses
on average 26 to 29 rules). Furthermore, the results show
that using only 15 rules, the proposed procedure approaches
the AUC performance of the more complex RF models.
Therefore, the methodology presented in this paper seems
to offer a better compromise between interpretability and
prediction performance than the comparison models, which
may facilitate its translation to clinical practice.

Fig. 2 shows how the proposed approach compares to the
standard methodologies that select rules from ensembles of
trees. It is possible to analyze that using the predicted rule’s
correctness to weigh the final outcome prediction for each
patient (giving more importance to the rules predicted to
be correct at the individual level) can significantly improve
the predictive ability. As expected, this improvement is
most noticeable for the smaller sets of rules, as a large set
attenuates the effect of a single rule.

Lastly, the prediction of each rule’s correctness offers a
personalized element in the proposed approach, informing if
a given rule is expected to be correct or not for a particular
patient. This information can be used by the physicians to
further assess the condition of each patient, i.e., they can
better evaluate how each rule may be applied individually.

V. CONCLUSIONS AND FUTURE WORK
In this study, we introduced an innovative step to the

methodologies that aim at extract and select decision rules
from ensembles of trees in order to improve its interpretabil-
ity, while assuring its good prediction performance. Such
novelty is related to the prediction of the correctness of each
rule for a given patient, which is then used to weigh the
final output prediction. This personalization capability seems
to improve the ability of the models to correctly classify the
patient’s outcome. In short, the development of this approach
in the clinical domain might assume great importance.

The proposed methodology can be further improved. For
example, different methods for rules’ subset selection and
rules’ correctness prediction may be applied, which may
increase the performance ability of the models. Finally, its
extension to multiclass and regression problems, which are
common in the clinical context, may also be considered.
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