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Abstract— Connectivity analyses are widely used to assess the 

interaction brain networks. This type of analyses is usually 

conducted considering the well-known classical frequency 

bands: delta, theta, alpha, beta, and gamma. However, this 

parcellation of the frequency content can bias the analyses, since 

it does not consider the between-subject variability or the 

particular idiosyncrasies of the connectivity patterns that occur 

within a band. In this study, we addressed these limitations by 

introducing the High Frequential Resolution Networks 

(HFRNs). HFRNs were constructed, using a narrow-bandwidth 

FIR bank filter of 1 Hz bandwidth, for two different connectivity 

metrics (Amplitude Envelope Correlation, AEC, and Phase Lag 

index, PLI) and for 3 different databases of MEG and EEG 

recordings. Results showed a noticeable similarity between the 

frequential evolution of PLI, AEC, and the Power Spectral 

Density (PSD) from MEG and EEG signals. Nonetheless, some 

technical remarks should be considered: (i) results at the gamma 

band should exclude the frequency range around 50 Hz due to 

abnormal connectivity patterns, consequence of the previously 

applied 50 Hz notch-filter; (ii) HFRNs patterns barely vary with 

the connection distance; and (iii) a low sampling frequency can 

exert a remarkable influence on HFRNs. To conclude, we 

proposed a new framework to perform connectivity analyses 

that allow to further analyze the frequency-based distribution of 

brain networks. 

I. INTRODUCTION 

Neural signals are the result of synaptic interactions 
between neurons. They contain valuable information about 
brain function that could help to a deeper understanding of 
neural processes, such as brain maturation or the neural 
mechanisms associated with the onset and progression of 
diverse diseases [1]. In this regard, brain imaging techniques 
play an important role, as they can record brain activity in a 
non-invasive way. Electroencephalogram (EEG) and 
magnetoencephalogram (MEG) are two electrophysiological 
imaging techniques with a high temporal resolution [1]. EEG 
has a reduced cost and a high portability compared with MEG 
[1]. On the other hand, MEG provides a higher spatial 
resolution, as well as robustness against volume conduction 
effects [1]. 
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EEG and MEG signals can  be analyzed in different ways 
[2]: i) ‘zero order analyses’, by exploring local activation 
patterns at individual sources; ii) ‘first order analyses’, by 
computing the interactions between each pair of sources; and 
iii) ‘second and higher order analyses’, characterizing the 
higher order interactions of brain activity. Zero order metrics 
are widely used, but over-simplify a complex system as the 
brain [2]. Thereby, they are completed by first, second and 
higher order analyses, which provide a framework to assess 
the complex relationships between different brain regions [2]. 

Most  of the methodological approaches applied to carry 
out ‘second and higher order’ analyses are based on 
considering the classical neurophysiological frequency bands 
(i.e., delta, theta, alpha, beta, gamma, and high-gamma) [3], 
[4]. Although these frequency bands have been useful to 
glimpse the underlying brain organization [5], this division of 
the spectrum presents several limitations: it oversimplifies a 
complex system as the brain by limiting the ways of 
establishing frequency-based networks; it obscures the 
intricate architecture of the interactions between brain regions 
that occur within a band; and the between-subjects spectral 
variability or individual idiosyncrasy of the connectivity 
patterns is neglected by defining a-priori fixed bands. 
Although some connectivity measures, as Coherency or Phase 
Slope Index, provide frequency-dependent results, they are 
based on cross-spectral densities, which impacts on their 
frequential resolution and makes it difficult to deal with 
volume conduction effects. 

Here, we present a new approach to analyze the functional 
connectivity of EEG and MEG recordings that overcomes the 
previous limitations by increasing the frequency resolution of 
the analyses, the so-called High Frequential Resolution 
Networks (HFRN). Specifically, we propose to construct the 
functional connectivity matrices by filtering the signals using 
narrow frequency bands, thus removing the frequency 
resolution limitation that is now present in these analyses. 
Nevertheless, there are many technical aspects to be 
considered before applying this novel methodology. Hence, in 
this study, we will address some relevant methodological 
issues that have to be considered when using HFRN. 
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II. MATERIALS 

A. Participants and neurophysiological signals 

Three different datasets were used from healthy elderly 
participants: (i) HOKUTO, with 29 MEG recordings; (ii) 
POCTEP, with 51 EEG recordings; and (iii) HURH, with 45 
EEG recordings. In all the databases, 5 minutes of resting-state 
eyes-closed neurophysiological activity were recorded. 
Participants were required to stay still and awake during the 
acquisition of the signals, that were monitored in real time to 
avoid somnolence. 

The characteristics of the recordings in each database are 
described below: 

• HOKUTO (Japan) – Signals were acquired with a 160-
channel axial gradiometer MEG system (MEG Vision 
PQ1160C, Yokogawa Electric), with a sampling 
frequency (fs) of 1000 Hz . This database was formed 
by 17 males and 12 females with an age of 69.0±5.2 
years (mean±standard deviation, SD). 

• POCTEP (Spain and Portugal) – Signals were acquired 
using a 19-channel EEG system (Neurofax JE 921A, 
Nihon Kohden), with a sampling rate of 500 Hz using 
19 electrodes from the international 10-20 system (Fp1, 
Fp2, Fz, F3, F4, F7, F8, Cz, C3, C4, T3, T4, T5, T6, Pz, 
P3, P4, O1, and O2). The database included 26 males 
and 25 females with an age of 80.1±7.1 years 
(mean±SD). 

• HURH (Spain) – Signals were acquired with a 19-
channel EEG system (XLTEK®, Natus Medical) using 
the international 10-20 system and the same 19 
electrodes used in POCTEP. The fs was of 200 Hz. The 
database was composed by 14 males and 31 females 
with an age of 76.3±4.0 years (mean±SD). 

All the recordings were conducted in accordance with the 
Code of Ethics of the World Medical Association (Declaration 
of Helsinki) and approved by the Ethical Committees (Hokuto 
Hospital for HOKUTO, Porto University for POCTEP, and 
‘Río Hortega’ University Hospital for HURH). 

B. Preprocessing 

All the signals were preprocessed using a similar pipeline 
[6]: i) application of a finite impulse response (FIR) filtering 
using a Hamming window: bandstop (49.5-50.5 Hz) to remove 
line noise, and bandpass (1-70 Hz) to limit noise bandwidth; 
ii) independent component analysis to remove artifacts; and 
iii) visual selection of 5-second artifact-free trials. 
Furthermore, due to the increased spatial resolution of the 
MEG signals, the SOUND algorithm was applied before the 
preprocessing pipeline thus having this database an additional 
preprocessing step that reconstruct at source level the 
artifactuated segments of the signals [7]. The mean number of 
trials per participant was: 49±8 (mean±SD) for HOKUTO, 
44±11 (mean±SD) for POCTEP, and 46±7 (mean±SD) for 
HURH. 

III. METHODOLOGY 

A. Source localization 

To ameliorate the volume conduction and field spread 
effects, all the analyses were carried out at source level. The 

inverse problem was solved using the weighted Minimum 
Norm Estimation (wMNE) algorithm, which restricts the 
solutions by minimizing the energy while weighting the deeper 
sources to ease their identification [8]. Furthermore, an 
anatomical template with 15000 cortical sources was used. 
Those sources were grouped in the 68 regions of interest 
(ROIs) defined by the Desikan-Killiany atlas [9]. 
Consequently, all the subsequent analyses will be performed 
at source level. 

B. Estimation of the power spectral density 

Power spectral density (PSD) of the signals was computed 

by means of the Blackman-Tuckey method, using a 

rectangular window of 5-second length without overlapping. 

Next, each PSD was normalized by its total power, thus 

obtaining the normalized PSD (PSDn) [6]. 

C. Generation of the HFRN 

Many connectivity metrics have been proposed to assess 
the association between time series. In this study, we used two 
of the most widely used: the orthogonalized Amplitude 
Envelope Correlation (AEC), and the Phase Lag Index (PLI) 
[10]. We applied these two metrics because they are simple 
and widespread, but based on different principles: while PLI 
measures the relationship of two time series examining their 
phase changes, AEC is based on the signal amplitude [10]. 
Besides, PLI has the advantage of being robust against volume 
conduction effects [10]. Deeper insights on these connectivity 
measures can be found in [10]. Also, it is noteworthy that 
analyzing two different connectivity metrics will allow us to 
make our results relatively independent of the connectivity 
measure employed.  

Typically, connectivity metrics that analyze the coupling 
between brain regions are computed in the well-known 
classical frequency bands; this yields a poor frequency 
resolution. Here, we aim to present a methodology that can 
analyze more precisely the frequential evolution of the 
interactions between the different brain regions. For this task, 
we used a narrow-bandwidth FIR bank filter of 1 Hz 
bandwidth, with an overlapping of 50% from 1 Hz to 70 Hz. 
The filter order was set to 333 (i.e. 1/3 of the minimum epoch 
length, that is the maximum allowed by MATLAB filtfilt 
function) as we wanted to keep the precision of the filter 
response as high as possible [11]. A Hamming window was 
employed to reduce the ringing effects associated to the 
relatively high order of the filter [11]. Signals were filtered 
forward and backward to avoid phase distortion [11]. 
Furthermore, we used the signal reflection technique to 
ameliorate the edge effects of the filter, as the signals were 
filtered before the segmentation process [11]. 

IV.  RESULTS AND DISCUSSION  

A. Influence of the acquisition technique in HFRN 

Figure 1 shows the frequency distribution of PSDn, and of 
connectivity strength calculated by means of PLI, and AEC for 
the three databases under assessment. In the three curves, the 
values of all the ROIs were averaged. It is noteworthy that PLI 
and AEC present some similarities between them, as well as 
with PSDn. For all the databases, it can be appreciated that PLI 
and AEC exhibit a peak in the alpha range, which partially 
corresponds with the alpha peak in PSDn, but slightly shifted 
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to lower frequencies. Nonetheless, the distribution of the 
curves presents remarkable differences between them. This 
supports the fact that, although PSDn and connectivity metrics 
contain partially overlapped information and should not be 
considered as completely independent, they are reflecting 
different properties of the neural activity: PSDn reflects local 
synchrony of nearby neuronal pools, while the connectivity 
parameters reflect long-range synchronization [2]. These 
findings are in line with a previous study where a significant 
correlation was found between different network metrics and 
the relative power in alpha, which can be estimated from PSD 
[12]. Recent research also found significant correlations 
between the PSD and the clustering coefficient [13]. Hence, 
our findings support the hypothesis that PSDn reflects not only 
the local activation of neuronal pools but also the 
synchronization of distant functional units [14]. In this regard, 
Figure 2 depicts the frequential evolution of PLI and AEC as 
a function of the connection distance, estimated from the 
Desikan-Killiany atlas. It could be appreciated that the 
distance barely influences the frequential distribution. 
Although the strength exhibits some differences around the 

alpha band for higher distances, it is likely provoked by the 
reduced number of connections in the high-distance intervals.  

For all databases it could be appreciated that the 
connectivity around alpha band presents the highest values 
(apart from the artifact around 50 Hz, which will be analyzed 
below). Alpha oscillations are associated with higher cognitive 
processes, being widely analyzed [15]. It can be hypothesized 
that this increased connectivity in alpha band could be linked 
to a “working state” in resting-state where the brain seems to 
be hyper-connected. Furthermore, it could also be appreciated 
that in alpha band the variability of the connectivity signals is 
very high. This issue suggests a relevant inter-participant 
variability that could be being a confounding factor in the 
studies that employs fixed frequency bands. HFRN would 
enable the design of personalized frequency bands, which 
would adapt the connectivity analyses to each subject’s 
particular idiosyncrasies. 

Of note, a prominent change in the connectivity 
distribution appears around 50 Hz for both, PLI and AEC. Two 
hypotheses could explain the presence of this artifact: (i) the 
partial mitigation of the interference of the power line noise, 
and (ii) the bandstop filter applied to remove that interference. 
By visually inspecting the PSDn from the different databases, 
it could be appreciated that the effect of the power line noise 
is almost fully removed, thus it is probably that this artifact is 
provoked not by the power line noise, but the filter itself. In 
line with this idea, it could also be observed for HOKUTO at 
the lower cutoff frequency (i.e., 1 Hz), for HURH at upper 
cutoff frequency (i.e., 70 Hz), and for POCTEP at both, lower 
and upper cutoff frequencies, that a similar artifact seems to 
appear; it is probably provoked by the artificial increase of 
connectivity due to the alteration of the signal properties due 
to the bandpass filtering applied to limit noise bandwidth. 

B. Influence of the sampling frequency in HFRN 

By comparing the results from the different databases, 
remarkable differences can be appreciated between them. It 
can be observed an increased smoothness for the results of 
HOKUTO regarding both EEG databases and for POCTEP 
when compared to HURH. Furthermore, the magnitude of the 
results also varies between iterations, with HURH showing 
higher values than POCTEP, and this showing higher values 
than HOKUTO. It could be hypothesized that these differences 
could be provoked by the sampling frequency (Fs), as 
HOKUTO was acquired with a Fs greater than POCTEP and 

 

Figure 1. Frequency distribution of the PSDn (black), PLI (blue), and AEC 

(red). First row corresponds with HOKUTO MEG database, second with 

POCTEP EEG database, and the last one with HURH EEG database. The 

left axis reflects values of the PSDn, while the right axis reflects the 

connectivity values (PLI and AEC). For each measure, he dark line 

indicates the median value, and the shaded area corresponds to the 

standard deviation. 

 

 

Figure 2. Connectivity strength calculated by means of PLI (first row) and 

AEC (second row) as a function of frequency (x-axis) and distance (y-axis) 

for HOKUTO database. Distances were grouped in 32 equally-spaced 

intervals. Distance values were removed as they are ambiguous due to the 

usage of a head template. 

 

724



  

HURH by a factor of two and five, respectively. This finding 
is not in line with a previous study where the connectivity 
results were barely influenced by Fs [16]. Nonetheless, this 
discrepancy may be motivated the approach used, as Fraschini 
and colleagues employed only one frequency band from 1 to 
20 Hz [16].  

To directly evaluate the influence of the sampling 
frequency, the HFRN were constructed for the HOKUTO 
database downsampling the signals to different Fs values: 800, 
600, 400 and 200 Hz (apart from the original Fs = 1000 Hz). 
Figure 3 depicts the results; it can be appreciated that the 
magnitude of the connectivity and the ripple increase with the 
decrease of the sampling frequency. This issue suggests that 
the higher the sampling frequency, the more defined the 
frequency distribution of the connectivity patterns. 

C. Limitations and future lines 

There are some methodological issues that should be 
considered for future analyses. First, only one parameter (the 
sampling frequency) was analyzed, while there could be more 
factors influencing the networks, as the epoch length that has 
been previously proven to have a remarkable influence in the 
connectivity patterns [16]. Besides, despite the fact that the 
filter has been carefully selected, it would be interesting to 
analyze in depth the influence of different filter settings in the 
HFRN. Also, it should be tested a central-frequency-
dependent adaptative-filtering approximation. Finally, it 
would also be interesting analyze the influence of the source 
localization algorithm.  

V. CONCLUSIONS 

We have proposed a novel methodology that enables the 
study of the brain connectivity patterns with a high frequential 

resolution. Although the analysis pipeline is still under 
development, several key methodological considerations can 
be delineated from the present study. Firstly, HFRN allowed 
to glimpse an increase in the connectivity strength in the alpha 
band, similar to the alpha peak in the PSDn, showing a 
noticeable alignment between both curves. Secondly, it has 
been observed that the global strength of HFRNs does not 
depend on the distance of the assessed connection.  Thirdly, 
it is noteworthy that the gamma band should exclude the 
frequency range around the power line interference, due to the 
distortion introduced by the power line filtering.  Finally, it 
could be appreciated that the Fs influences the HFRN, with 
higher Fs values showing smoother results with lower 
magnitude values. 
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Figure 3. Influence of the sampling frequency (Fs) in the frequency 

distribution of PLI (first row) and AEC (second row) for the HOKUTO 

database. The line is the median value, and the shaded area the standard 

deviation. The assessed Fs values are: 1000 Hz (red line), 800 Hz (green 

line), 600 Hz (dark blue line), 400 Hz (pink line), and 200 Hz (light blue 

line). X-axis has been limited to 45 Hz to ease the visualization of the 

curves by removing the 50-Hz-artifact. 
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