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Abstract— After stroke, many individuals develop impair-
ments that lead to compensatory motions. Compensation allows
individuals to achieve tasks but has long-term detrimental
effects and represents maladaptive motor strategies. Increased
use of bimanual motions may serve as a biomarker for recovery
(and the reduction of reliance on compensatory motion), and
tracking such motion using sensor data may provide critical
data for health care specialists. However, past work by the
authors demonstrated individual variation in motor strategies
results in noisy and chaotic sensor data. The goal of the current
work is to develop classifiers capable of differentiating uniman-
ual, bimanaual asymmetric, and bimanual symmetric gestures
using wearable sensor data. Twenty participants post-stroke
(and 20 age-matched controls) performed a set of tasks under
the supervision of a trained occupational therapist. Sensor data
were recorded for each task. Classifiers were developed using
artificial neural networks (ANNs) as a baseline, and the echo
state neural network (ESNN) which has demonstrated efficacy
with chaotic data. We find that, for control and post-stroke
participants, the ESNN results in improved testing accuracy
performance (91.3% and 80.3%, respectively). These results
suggest a novel method for classifying gestures in individuals
post-stroke, and the developed classifiers may facilitate longi-
tudinal monitoring and correction of compensatory motion.

I. INTRODUCTION

Every year, almost 800,000 people in the US suffer a
stroke, and stroke is now the leading cause of serious long-
term disability in the US with as many as three-quarters of
survivors reporting impairment in some studies [1]. Hemi-
paresis (one side of the body presenting with weakness or
paralysis) is one such impairment. Stroke survivors with
hemiparesis often employ movement strategies that are dif-
ferent than those that were used before the onset of stroke
known as compensatory strategies. Common compensatory
strategies include non-use of the affected limb or atypical
movement or coupling of the limb(s) to compensate for
weakness, rigidity, and limited motor control [2]–[4]. For
patients with severe impairment, compensation may be ideal;
however, long term use of these compensatory behaviors has
been shown to decrease quality of life and life span, and
to reduce capability and cortical representation of the more
affected limb [5], [6].

Stroke survivors are developing, performing, and reinforc-
ing compensatory behaviors in the ambient setting while they
are unmonitored by a healthcare specialist [6]. Because of
this, enthusiasm has increased for remote assessment and
rehabilitation [7]–[9]. Although compensatory strategies are
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well defined, the specific behaviors that individuals employ
can be more difficult to characterize and quantify. Given the
task being performed, it is also difficult to autonomously
determine whether a movement strategy is compensatory
because some behaviors are appropriate while performing
a certain type of task but inappropriate while performing
others [10]. Thus, we believe the first step in autonomous
treatment of compensatory strategies is the capability to
distinguish between the common categories (or types) of
tasks that people post-stroke will often attempt to perform
in their daily life.

Miller et al. [11] investigated this phenomenon using a se-
lected set of upper extremity (UE) tasks. They demonstrated
that wearable sensor data are sensitive to differences in task
types as well as the differences in task performance by post-
stroke and control groups. Miller et al. [10] also showed
that a select set of features extracted from overlapping data
windows can be used to train a supervised machine learning
model to distinguish between task types. However, given
the complexity and variability of UE motion, achieving
high accuracy required classification techniques trained and
evaluated on the same datasets (i.e., user–dependent models).
The goal of the current work is to determine if other machine
learning approaches are capable of creating a generalized,
universally applicable (i.e., user–independent) model capable
of distinguishing between task types for post-stroke and
control individuals using windowed motion data.

Machine learning methods have been used in many appli-
cations for people post-stroke. Health outcomes [12], therapy
stage [13], and Fugl-Meyer Assessment (FMA) scores [14]
have been predicted using supervised machine learning tech-
niques (random forest, linear regression, and Support Vectors
Machines (SVM)) and deep neural networks. Hand gestures
have been classified using supervised techniques such as
linear discriminant analysis (LDA), SVM, and k-Nearest
Neighbors (KNN) [15], [16], and gait and walking conditions
have been characterized by SVM and neural networks [17],
[18]. To date, machine learning methods have not been ex-
tensively used to classify upper extremity (UE) gestures. This
is likely because time series data that present with seasonal
cycles combined with linear trends or other randomness, such
as UE motion data, often appear chaotic and can be difficult
to classify using a time series model. However, the echo state
neural network (ESNN) is a recurrent neural network that
uses a loosely connected hidden layer (known as a reservoir)
and works well with chaotic data [19], [20]. To investigate
the utility of this approach with UE data we use a multi-
layer perceptron (MLP) artificial neural network (ANN) to
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establish baseline accuracy. We also investigate the perfor-
mance of neural network–based task classification, relative to
the previously employed machine learning methods. We then
test an ESNN to evaluate model accuracy given complex,
highly variable, windowed time-series data from post-stroke
and control groups performing UE tasks.

II. METHODS

A. Design

Individuals post stroke and healthy-age matched controls
were recruited from two clinical sites: Columbia University
Irving Medical Center/Teachers College, Columbia Univer-
sity and Chapman University. In this cross-sectional study,
participants attended a single session where they were asked
to perform a series of tasks, while both seated and standing,
that are representative of the types of tasks that an individual
would be performing in an ambient setting. These included:
UL, unimanual tasks performed with the dominant (control)
or less-affected (post-stroke) limb (e.g., reaching for and
picking up a spoon or a bottle); UM, unimanual tasks per-
formed with the non-dominant or more affected limb; BL,
bimanual asymmetric tasks where both limbs were expected
to be engaged with differing intensity and the dominant or
less affected limb is more actively being used (e.g., stirring
a bowl or unscrewing the lid of a bottle); BM, bimanual
asymmetric tasks where the non-dominant or more affected
limb is more actively being used; and BS, bimanual sym-
metric tasks where both limbs were expected to be engaged
an equal amount (e.g., donning a hat or folding a towel).
This study was approved by the Institutional Review Boards
at Columbia University Irving Medical Center, Teachers
College, Columbia University and Chapman University. All
participants provided written informed consent.

B. Procedure

Participants wore five APDM Opal inertial measurement
units (IMUs) on the sternum, both wrists, and both upper
arms during task performance. Each sensor recorded three
sensor modalities (accelerometer, angular rate of change,
and magnetic field strength) on three axes (x, y, and z)
at 128 Hz (www.apdm.com). Participants were also filmed
to obtain ground-truth task performance times. These data
were filtered using a Butterworth bandpass filter with cutoff
frequencies of 0.1 Hz–2 Hz (this filter was determined to
be appropriate for signal power of volitional movement
common to activities of daily living, (ADLs) [21]). Finally,
data were detrended to remove effects of drift. Following
task completion, video data were reviewed by a clinician
who manually determined start and stop times for each task
resulting in a dataset consisting of twelve tasks (2 UL, 2
UM, 2 BL, 2 BM, 4 BS), 40 participants (20 post-stroke
and 20 control), and 45 signals (5 sensors×3 modalities×3
axes). Each task was then divided into two second windows,
with 50% overlap.

C. Feature Extraction

For each window, data were downsampled to a sampling
rate of 64 Hz (from 128 Hz) to increase computational speed.
We then extracted various features useful for differentiating
and classifying human motion [22] including: area under
the curve (AUC); root mean square (RMS); signal magni-
tude area (SMA); signal vector magnitude (SMV); energy;
entropy; fast Fourier transform peak (FFTP); mean; and
standard deviation (SD). Each two second window resulted
in a matrix of 45 values (5 locations × 3 modalities × 3
axes) by 128 (two seconds × 64 Hz).

Beginning with the second data point (2/64th seconds into
the window), features were extracted from subvectors of
the raw data that increased in size until the final extracted
feature was derived using raw data from the entire window.
For features such as mean, methods like this are already
commonly employed (e.g. cumulative moving average [23])
except, in our case, each new feature is extracted from the
previous subvector of raw data appended by the latest datum
point. For the first instance of data in the window (1/64th of
a second into the window) there are insufficient data points
to create a vector from which features can be extracted. To
counteract this and ensure that feature vectors have the same
length as the raw data, a new data point was approximated
from the raw data. The new data point is assumed to happen
at time t0 = 0s and the data point itself is approximated
by the formula below where d1 and d2 are the data points
that are found at time t1 = 1/64th (s) and t2 = 2/64th (s)
respectively:

d0 = d1 − [d2 − d1] = 2× d1 − d2

This formula assumes equal spacing between data points
and allows for the generation of a feature vector of the
same length as raw data. Table I illustrates how values are
generated for one feature using this method: This approach

n 1 2 ... 128
Feature f1 f2 ... f128

Time [t0, t1] [t1, t2] ... [t1, t2, ..., t128]
Data [d0, d1] [d1, d2] ... [d1, d2, ..., d128]

TABLE I
DATA SYNTHESIS APPROACH

was used to ensure that all features were appropriately
formatted as inputs for MLP and ESNN models.

D. Data Preprocessing and Shaping

Each feature was standardized (using the appropriate
means and standard deviations for each modality) to ac-
count for relative differences in magnitude. Because the
windowing technique was used to generate input data, tasks
that took longer to perform (e.g., folding a towel) were
overrepresented while other tasks (e.g., reaching for a spoon)
were underrepresented. To account for this, participants were
randomly combined in groups and their data were bal-
anced using the Synthetic Minority Oversampling Technique
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(SMOTE) [24] combined with Edited Nearest Neighbors
(ENN) [25]. Both techniques are used to synthetically bal-
ance unbalanced datasets. They also removed data points
at the overlap between classes, resulting in better accuracy
and reduced computational costs. Sixty percent of the data
from each participant were randomly selected to train the
classifier and the other forty percent were held for validation
and testing.

Finally data were reshaped into a three-dimensional matrix
where each row corresponds to a single feature for a single
sensor, each column represents a time step, and each layer
represents a modality. Input data were of dimension 15N
(where N is the number of included features) by 128 by 3.

E. Model Structure

Data were classified using two different neural networks;
a simple multi-layer perceptron (MLP) and an Echo State
Recurrent Neural Network (ESNN). The MLP was chosen
because of its relatively low computational cost and its
frequent use for nonlinear time series prediction [26]–[29],
and the MLP has an input layer, a hidden layer consisting of
a flattened layer and 5 dense layers (4 with the rectified linear
unit activation and a final dense layer with a number of nodes
corresponding to the number of task types (5) with a SoftMax
activation), and an output layer. The number of dense layers
in the hidden layer and the number of neurons per dense
layer were empirically determined by systematically iterating
numbers of layers and neurons. The MLP was then compiled
using the Adam optimizer which is computationally efficient
and works for classification problems with large amounts of
data [30]. The loss function used was categorical cross-
entropy which computes the cross-entropy loss between
the labels and predictions. The model was then fit to the
training set and classification performance was improved by
minimizing the cross-validation error over several iterations.

The hyper-parameters of the ESNN were also empirically
determined to maximize classification accuracy. Using a
local, random search, the selected hyper-parameter values
were similar to those utilized in [31] (Table II).

III. RESULTS

To obtain baseline model performance, the MLP was first
evaluated using preprocessed raw data only (RAW). We
then obtained a model using preprocessed raw data and the
extracted area under the curve features (RAW+AUC). Next,
a third feature was added (RAW+AUC+f3). The third feature
was one of the list from Section II-C. The features for which
highest accuracy was achieved (RMS, SMA, SVM, FFTP)
were then used in combination with RAW+AUC data, as well
as each other, to evaluate the model for both post-stroke and
control participants. Only the highest performing features
were used to increase computational efficiency and decrease
time spent on analysis. Finally, a fourth feature was added
(RAW+AUC+f3+f4). No additional features were added to
the input dataset because continuing to increase the number
of features increases the chance or correlated features, which

Hyper-parameters of the Reservoir
Size of the Reservoir 495
Largest Eigenvalue of the Reservoir 0.53
Leakage in the Reservoir State Update 0.66
% of Nonzero Connections in the Reservoir 25
Scaling of the Input Weights 0.0878
Noise in the Reservoir State Update 0.01
Transient States to be Dropped 5
If True, Use Bidirectional Reservoir False
Use Reservoir with Circle Topology False

Dimensionality Reduction Hyper-parameters
Dimensionality Reduction Method PCA
Number of Resulting Dimension After PCA 168

Multivariate Time Series (MTS) Representation
MTS Representation reservoir
Parameter of the Ridge Regression 11

Type of Readout (Linear, SVM, MLP)
Readout used for Classification linear

Linear Readout Hyper-parameters
Reg. of the Ridge Regression Readout 4

SVM Readout Hyper-parameters
Bandwidth of the RBF Kernel 0.0055
Reg. of the SVM Hyperplane 5.5

MLP Readout Hyper-parameters
Neurons in each MLP Layer 9
Number of Epochs 2000
Weight of the L2 Regularization 0.001
Type of Activation Function tanh

TABLE II
MLP HYPER-PARAMETERS

can lead to model over-fitting and decreased validation and
testing accuracy [32], [33]. Results are depicted in Figure 1.

We used the Mann-Whitney U test to determine if adding
the fourth feature improved accuracy (when compared to
RAW+AUC+f3). For control participants, continuing to add
features after RAW+AUC did not increase model accuracy
and as the number of features increased from three to four,
testing accuracy significantly decreased (accuracy p = 0.071;
validation accuracy p = 0.439; testing accuracy p <=
0.003). The highest testing accuracy for controls (86.7%)
was achieved using the RAW+AUC+SMA features. For
participants post-stroke, although the average testing and
validation accuracy continued to increase as more features
were added, improvements were not significant (accuracy
p = 0.156; validation accuracy p = 0.156; testing accuracy
p = 0.197). The highest testing accuracy for participants
post-stroke (64%) used RAW+AUC+RMS features.

The ESNN was evaluated using all three readouts used for
classification. For the control participants, testing accuracy
was 91.3%, 86.5%, and 87.1% (when using the linear,
support vector machine, and multi-layer perceptron readout,
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Fig. 1. Accuracy (i), validation accuracy (ii), and test accuracy (iii) of the MLP classifier when using: (a) raw data; (b) raw data and the derived AUC
feature; (c) raw data, AUC, and one other derived feature; or (d) raw data, AUC, and two other derived features for both the Control (row 1) and Post-Stroke
(row 2) groups

respectively). For participants post-stroke, the testing accu-
racy was 80.3%, 74.1%, and 76.7% (when using the linear,
support vector machine, and multi-layer perceptron readout,
respectively).

IV. DISCUSSION

The purpose of this analysis was to determine if the
application of novel classification approaches (including the
multi-layer perceptron and echo state neural network) would
improve our ability to classify noisy, chaotic, human-derived,
time series data. According to our prior results [10], these
machine learning techniques are a marked improvement. Our
previous analyses demonstrated data collected from each
participant were necessary to train accurate classification
models prior to real time use (i.e., user dependent models).
Use of the MLP and ESNN will facilitate real time, user
independent models.

Using the simple MLP, we found that, although the vali-
dation and testing accuracy continued to improve for partic-
ipants post-stroke as feature were added, adding features did
not significantly increase the accuracy of the classifier. Sig-
nificant decreases in testing accuracy with increased number
of features for control participants was likely due to model
over-fitting. Given the risk of over-fitting and the increased
computational cost of adding features, we conclude that it is
best to let the neural network extract relevant features.

Finally, when using the ESNN, classification accuracy
greatly increased relative to MLP performance. This analysis
has shown that using a complex RNN such as the echo state

neural network can be useful in the real-time classification
of tasks in both control participants and participants post-
stroke using minimally intrusive sensing techniques that do
not impede the function of a participant.

As mentioned in the introduction, the first step in au-
tonomous recognition and reversal of compensatory move-
ment strategies is the capability to differentiate between the
types of tasks that people post-stroke perform in the ambient
setting. This classification can then be further used to iden-
tify, address, and decrease the use of compensatory behaviors
that can lead to a decreased quality of life or lifespan. In
the future, work can be done to improve the results of the
analysis using different preprocessing techniques to limit the
likelihood of overfitting, to determine the impact that data
from each sensor location has on the outcome of the models,
and to implement the system in real-time to validate the
models on a new group of participants.
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