
  

  

Abstract— Restoring natural motor function in neurologically 

injured individuals is challenging, largely due to the lack of 

personalization in current neurorehabilitation technologies. 

Signal-driven neuro-musculoskeletal models may offer a novel 

paradigm for devising novel closed-loop rehabilitation strategies 

according to an individual’s physiology. However, current 

modelling techniques are constrained to bipolar 

electromyography (EMG), thereby lacking the resolution 

necessary to extract the activity of individual motor units (MUs) 

in vivo. In this work, we decoded MU spike trains from high-

density (HD)-EMG to obtain relevant neural properties across 

multiple isometric plantar-dorsiflexion tasks.  Then, we sampled 

MU statistical distributions and used them to reproduce MU 

specific activation profiles. Results showed bimodal 

distributions which may correspond to slow and fast MU 

populations. The estimated activation profiles showed a high 

degree of similarity to the reference torque (R2>0.8) across the 

recorded muscles. This suggests that the estimation of MU twitch 

properties is a crucial step for the translation of neural 

information into muscle force. 

 
Clinical Relevance— This work has multiple implications for 

understanding the underlying mechanism of motor impairment 

and for developing closed-loop strategies for modulating alpha 

motor circuitries in neurologically injured individuals.  

I. INTRODUCTION 

The development of neuro-prostheses (e.g. spinal cord 

electrical stimulation and robotic exoskeletons) is currently 

hindered by our limited understanding of the interaction 

between neural and mechanical levels of human movement. 

As human motor function is highly variable across motor 

tasks and individuals [1]–[3], current neurorehabilitation 

technologies operate in open-loop and rely on empirical 

inspection. This prevents optimal restoration of motor 

function in neurologically injured patients. 

Computational simulations of the neuro-musculoskeletal 

system help expand our knowledge of the underlying spinal 

mechanisms of healthy [4] and pathological [5] motor 

function. Moreover, personalized, signal-driven neuro-

musculoskeletal models [6], [7]  take one step further by not 

only representing force-generation processes, but also 

capturing the within and between-subject variability. 

However, such models are often driven by global 

electromyograms (EMGs) and hence, offer a limited 

representation of the excitation-contraction coupling. In this 

regard, the ability of decoding motor units (MU) from higher 

 
* Research supported by the European Research Council Starting Grant 

INTERACT (grant no. 803035).  

A. Gogeascoechea Hernandez, R. Ornelas Kobayashi and M. Sartori are 
with the Department of Biomechanical Engineering, University of Twente, 

Netherlands. (email: a.d.j.gogeascoecheahernandez@utwente.nl).  

resolution EMG (i.e., high-density [HD]-EMG) in vivo opens 

up new avenues to extend current activation dynamics 

formulations. Moreover, as the MUs are the quantum 

elements of the nervous system to generate movement,  

measuring their activity is crucial to develop rehabilitation 

technology for restoring lost motor function.  

The access to motor neuron information enables the non-

invasive identification and characterization of pathological 

neural patterns [8], [9].  In turn, this leads to investigating how 

spinal motor circuitries respond to electrical or mechanical 

stimuli (i.e., response to neurorehabilitation devices). A 

recent study [10], for example, has shown how the strength of 

common synaptic input is altered by transcutaneous spinal 

electrical stimulation in spinal cord injured individuals. We 

aim at linking such in vivo approaches with the mechanical 

output through signal-driven neuro-musculoskeletal models. 

For this, the first step is to translate the language of the 

nervous system into muscle contractile properties. 

This study presents our ongoing efforts to build relations 

between the neural and musculoskeletal levels of movement 

in the intact human in vivo. First, we propose a technique to 

sample MU distributions across multiple trials and levels of 

activation. Second, we employ such distributions to reproduce 

MU-specific activation dynamics. This may lead to the 

development of closed-loop control strategies for 

neuromodulation, thereby enhancing movement in an optimal 

manner. 

II. METHODS 

A. Experimental procedures 

Experiments were approved by the University Medical 

Center Göttingen Ethical Committee (Ethikkommission der 

Universitätsmedizin Göttingen, approval number 01/10/12). 

The detailed procedures are described elsewhere [11]. Briefly, 

we selected a subset of a healthy subject who performed 

isometric plantar-dorsiflexion contractions (Fig 1.A) across 

three initial positions: anatomical (0°), 10° plantar- and 10° 

dorsiflexed; across different levels of activation: ramp up to 

30, 50, 70, and 90% of maximum voluntary contraction 

(MVC); and across fixed and variable slopes of activation. 

HD-EMGs were recorded using a 256-channel EMG 

amplifier (EMG-USB2, OT Bioelettronica, Torino, Italy) 

from the tibialis anterior, gastrocnemius, soleus, and peroneus 

(2048 Hz sampling frequency). The reference electrode was 
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placed on the malleolus. Torque was measured with a 

dynamometer (M3, Biodex Medical Systems Inc., Shirley, 

NY, USA). 

B. Sampling Motor Unit Distributions 

HD-EMG and torque data were offline processed using 

Matlab R2021a (The Mathworks Inc., Natick, MA, USA).  

HD-EMGs were band-pass filtered (10-500 Hz) with a  

second-order Butterworth filter. The filtered signals were then 

decomposed into constituent MU spike trains using a 

convolutive blind source separation technique [12] (Fig 1.B). 

Each spike train consists of a binary vector where ‘1’ indicates 

a discharge event, and ‘0’ a non-discharge event. We assessed 

the quality of the spike trains and removed the noise sources 

as proposed in our previous work [10]. This addressed current 

limitations with the decomposition algorithm and ensured that 

only physiologically correct MUs were included.   

After quality selection, we computed the mean discharge 

rate and recruitment threshold for each MU spike train. The 

mean discharge rate (DR) was defined as the mean inverse 

difference of the time elapsed between consecutive spikes:  

                                   𝐷𝑅 =  
1

𝑁 − 1
∑

1

𝑡𝑖 − 𝑡𝑖−1

𝑁

𝑖=2

  ,                (1) 

where 𝑡𝑖 is the time event of the ith spike and N is the total 

number of spikes in a single train.   

The recruitment threshold (RT) was defined as the mean 

percentage of maximum voluntary contraction given around 

the first discharge:  

                                   𝑅𝑇 =  
1

𝑤
∑ 𝑚(𝑛)

𝑡1+𝑤/2

𝑛=𝑡1−𝑤/2

  ,                      (2) 

where m is the percentage of MVC (i.e., normalized torque) 

and w is a 300-sample window (~150 ms) surrounding the 

first spike event (𝑡1). This accounts for torque fluctuations due 

to noise. Moreover, we selected only time intervals during the 

ramps to prevent estimating the recruitment threshold from 

isolated (sudden) spikes during resting periods.  

These features alone do not display a clear distinction of 

MU-types, i.e., without further processing, it is more 

challenging to predict twitch properties. Hence, we estimated 

a linear combination (eigenvector) that yields the largest 

possible variance of the decomposed MU features (Fig. 2.A 

and 2.B). For this, we normalized the mean discharge rate to 

a maximum of 40 Hz. We then reduced the dimensionality by 

extracting the first principal component (using singular value 

decomposition) and projected the data onto the first 

eigenvector  (Fig. 2.A). We computed histograms of the 

projection and their respective probability density function 

using a gaussian mixture model (Fig. 2.B).  

C. Activation dynamics formulation 

As we aim to characterize a twitch response with a high 

degree of adjustability, we focused on three main parameters: 

peak amplitude, contraction time (time-to-peak), and half 

relaxation time (Fig 1.C). We described an MU-specific 

twitch response (Fig 1.D) as proposed by Raikova et al. [13]. 

For this model, the total MU-specific activation is given by 

the sum of the individual twitch responses (Fig. 3).  

Additionally, we assessed the model proposed by 

Fuglevand et al. [14]. Although this model does not account 

for the half relaxation time, its discretized version is 

computationally efficient [15] and two parameters may be 

sufficient to obtain accurate activation profiles.  

 We estimated the contractile parameters from 

literature[16], [17]. To map the probability distributions into 

contraction times, we selected characteristic landmarks (e.g. 

limits of the eigenvector, location of the two peaks, and 

location of the valley between peaks). We then extracted the 

same landmarks from the contraction time distribution [16] 

 
Figure 1. Overview of motor unit (MU)-specific activation dynamics formulation. (A) The subjects performed plantar-dorsiflexion contractions and 256 

monopolar channels (ch) of high-density electromyography (HD-EMG) were recorded. (B) The processed HD-EMGs were decomposed into MU spike trains 

for each muscle. Thereafter, the mean discharge rate and recruitment threshold were computed for each MU. Finally, gaussian distributions were fitted resulting 
in two populations of MUs (slow and fast). (C) Each twitch was designed as an impulse response of a critically damped system with MU-specific contractile 

parameters (in red circles) (D) The convolution between the spike trains and their specific twitch response results in an activation profile. 
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(Fig 2.B), and computed piecewise linear interpolation, 

thereby assigning a specific contraction time to each MU (Fig. 

2.C). As the scope of this study is to investigate the shape of 

the activation profile, the twitch peak (amplitude) was set 

constant. Similarly, we assumed that the half relaxation time 

was approximately equal to the contraction time for 

Raikova’s model [13]. This provides a faster twitch decay 

than the natural decay of Fuglevand’s model [14], which is in 

line with experimental observations [16], [17].  

III. RESULTS 

The projection of the neural features onto the first 

eigenvector resulted in bimodal distributions for all muscles 

(e.g., tibialis anterior in Fig. 2.B). Namely, these projections 

contain information of two populations with slow and fast-

twitch properties. The mean discharge rates and standard 

deviations of the two populations are displayed in table 1.  

Fig. 4 depicts the coefficient of determination (R2) between 

the reference torque and the estimated activation profiles for 

the twitch models. Both formulations tended to similar 

coefficients for most muscles: 0.92 for the tibialis anterior and 

the medial gastrocnemius,  0.83 for the soleus, and 0.88 for 

the lateral gastrocnemius. For the peroneus, the coefficients 

of determination slightly differed: 0.90 and 0.83 for 

Fuglevand’s and Raikova’s formulation, respectively. The 

majority of outliers (14 out of 16) corresponded to high-

torque trials (i.e., ramps up to 70% and 90% of MVC). 

Moreover, the computation time of Fuglevand’s formulation 

was ~150 times shorter than Raikova’s formulation.   

TABLE I.  MOTOR-UNIT GAUSSIAN MIXTURE MEANS (AND STD.) OF 

DISCHARGE RATES (DR) AND RECRUITMENT THRESHOLD (RT) 

Muscles 
Slow ( type I) Fast ( type IIa and IIb) 

DR (Hz) RT DR RT 

TA 16.3 (0.1) 0.11(0.003) 26.8(0.6) 0.41(0.017) 

SOL 12.5(0.04) 0.10 (0.003) 15.8(0.3) 0.34(0.02) 

PER 34.4 (0.7) 0.07(0.001) 41.7(0.1) 0.08(0.001) 

GASmed 29.3(0.2) 0.40(0.01) 37.8(0.2) 0.13(0.01) 

GASlat 31.8(1.3) 0.25(0.02) 41.7(0.1) 0.10(0.001) 

IV. DISCUSSION 

We proposed a framework for coupling neural features to 

force-generation processes of human movement. This is 

realized by sampling statistical distributions of MUs and 

mapping them into MU-specific twitch responses.  

Results of the statistical sampling showed bimodal 

distributions across all muscles. This bimodal nature may 

represent two populations of motor neurons (slow and fast) 

with overlapping neural features. We employed this 

characteristic to link neural features with contractile 

properties of the activation dynamics.  

The estimated activation profiles showed high coefficients 

of determination (>0.8) for both models (Fig.4). Fig. 3, for 

example, depicts a high correlation between torque and its 

respective activation profile even with a very inconsistent 

(hesitant) movement. Although both models demonstrated 

robust estimations of activation profiles, Fuglevand’s was 

substantially superior in computation time (~150 times 

faster). This was due to the possibility of discretizing this 

system instead of summing the contribution of individual 

twitches. Even though Raikova’s model could provide better 

 
Figure 2. Neural mapping into twitch contraction time (tibialis anterior example). (A) Projection of normalized data onto the first principal component 

(eigenvector yielding the maximum variance of both features). Each point of the scatter plot represents a measurement (discharge rate and recruitment 
threshold) of a single motor unit (MU). (B) Histogram of data projection onto first eigenvector (top) and histogram of twitch contraction times measured in 

humans [16] (bottom). Both are normalized by the probability density function estimate, i.e., by the total number of elements times the width of the bins. The 

mapping is achieved by piecewise linear interpolation (middle). (C) Resultant transformed distribution into twitch contraction times.  

 
Figure 3. Example of activation profile (in red) from the tibialis anterior 

during a dorsiflexion task. The gray line corresponds to the normalized 

reference torque (% of maximum voluntary contraction [MVC]) 
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coefficients of determination with optimal values of half 

relaxation time, its computation time hinders potential 

applications to real-time scenarios.  

The mapping of the half relaxation time and peak twitch 

amplitude will be addressed in future work, i.e., we will build 

causal relations between the measured neural features and 

these contractile parameters, considering their unimodal 

distributions [16], [17]. Furthermore, an optimization of the 

distributions of these parameters is needed to better tailor the 

resulting models to an individual. This can be achieved by 

adjusting the means and standard deviations of the fitted 

Gaussian curves.    

Importantly, the decomposition algorithm [12] limited the 

estimation of high-activation profiles. For instance, most of 

the outliers in Fig. 4 occurred during high-torque trials. This 

is due to the inability of decomposing smaller MUs (with low 

action potentials) in presence of bigger MUs (with higher 

action potentials). As the small MUs (slow) are the first to be 

recruited, long silent periods were common at the beginning 

of the ramps to 70% and 90% of the MVC.   

Moreover, future work will implement a longitudinal 

tracking of MUs [18] to prevent possible repetitions within 

the sampling of neural features. This may offer a more precise 

picture of the projected features, and thus, a better neural 

mapping to activation dynamics. 

V. CONCLUSIONS 

We demonstrated a series of techniques for sampling MUs 

in vivo, displaying their statical organization and linking them 

to force-generation processes of human movement. Despite 

lacking optimization, our methodology provided solid 

activation profiles with a high degree of similarity to 

reference torques. After incorporating musculoskeletal 

modelling, this will enable closing the loop between the 

patient and neurorehabilitation devices, thereby addressing 

current limitations to customize neuromodulation strategies. 
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Figure 4. Square of the Pearson correlation coefficient between the reference torque and activation profiles derived from two twitch models: Fuglevand et al. 

[14] in blue and Raikova et al. [13] in red. This metric was computed for 5 different muscles: tibialis anterior (TA), soleus (SOL), medial and lateral 

gastrocnemius (GASmed and GASlat), and peroneus tertius (PER).  
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