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Abstract—Thermography can contribute to the early 

diagnosis of tumors by identifying nodules that need to be 

analyzed.  The objective of this paper was to verify possible 

semivariogram curves to identify the possible spatial behavior 

centered in the region with the nodule and capture the thermal 

behavioral information surroundings of this point. For this, we 

used the resources of R-Studio and theoretical basis in 

semivariogram models. As results we verified that the spatial 

technique indicates Gaussian behavior in both healthy and 

tumor areas, but the thermal averages differ from each other. 

Based on the cases analyzed, all tumors evaluated were 

thermally significantly different in relation to the healthy point, 

even when presenting the same model for the semivariogram 

 

Clinical Relevance—Thermographic is a non-invasive 

technique and has been widely studied to aid in the early 

diagnosis of neoplasms by identifying nodules that need to be 

evaluated. Without this early identification, only larger 

(palpable) tumors would be evaluated, and thus many patients 

are at risk of developing metastasis before treatment begins. 

 

I. INTRODUCTION 

Over a lifetime, one in eight women will be diagnosed 

with cancer, with more than half (52%) of cases and 62% of 

deaths occurring in developing countries [1]. Thyroid cancer 

most commonly affects women and is the most common 

type of neoplasm of the endocrine system. Early detection 

can reduce mortality. For this, it is necessary to adopt 

technologies to assist in this early diagnosis [2].  

Thermoregulation is a natural phenomenon of body 

temperature maintenance mediated by the autonomic 

nervous system and has the potential to detect diseases that 

have thermal properties, such as cancer. Tumor cells absorb 

more nutrients, are metabolically more active, and reproduce 

in a disorganized way. Thus, the heat transferred in these 

cells leads to different temperatures than in the rest of the 

body. Furthermore, the temperature in these regions is 
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higher, which enables identification through thermal 

cameras [3].  

In addition, thermography is inexpensive when compared 

to other imaging exams and has shown promise as a 

technique. It is based on the principle of measuring the 

emitted radiation by an object or surface through an infrared 

camera to determine its temperature. All bodies above 

absolute zero temperature emit thermal radiation which can 

be computationally converted to "pixels" of temperature. 

Infrared cameras, or thermographic cameras, capture the 

thermal radiation emitted by the body and convert it into an 

image that represents the distribution of surface temperatures 

of that body [4]. When there is an abnormality in the body 

tissue, such as a tumor (either malignant or benign), there is 

a change in the temperature in this tissue [5]. Thus, the goal 

of this study was to use mathematical modeling to do a 

tracking and identify possible tumor regions. 

II.METHODOLOGY 

A descriptive study was carried out with 32 patients 

(55.2±11.0 years old) with nodules in the thyroid region, 

confirmed by ultrasound (US) and fine needle aspiration 

puncture (FNAB), in a specialized cancer hospital.  The 

experimental project involving human subjects was 

approved by the Ethics Committee of the Hospital before 

being initiated. 

The data collection environment was 22°C, with a margin 

of error of 1°C, controlled by an air conditioner and 

monitored with a digital thermometer. The images were 

collected with a Model Ti32 Fluke Thermography camera. 

Thermal stress was performed with a gel pack for 30 

seconds in the region. After three minutes of reheat, the 

thermal image was collected for data analysis (Fig.1). The 

analyses were performed in the SmartView 4.3 software that 

came with the camera, to perform temperature extraction and 

mean analysis.  

 

 
Figure 1. Representation of neck original position (left); thermal 
representation immediately after cold stress and in third minute. 

 

Both the tumor areas (T) and the adjacent region (healthy 

tissue - H) were delimited and analyzed. R software was 

used to perform the analysis of the thermal variations and 

the analysis of the spatial behavior (variograms). To verify 
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descriptive information between healthy and tumor tissue, 

exploratory analyses of data (mean, maximum and minimum 

temperatures) were performed [6]. 

 

In the second step the study of fit models of semivariance 

around the tumor and healthy regions was evaluated. To 

choose the theoretical semivariogram model with the best fit, 

the cross-validation technique was used for the values 

estimated by different theoretical models, given the ordinary 

kriging [7].  

The semivariogram function [8] is one of the most widely 

used tools to represent the space expedition of a random 

function Z(u) in the direction of a spatial distance vector h 

between two points. This function is widely used in 

geostatistics to determine to explore spatial patterns or 

continuities. The variogram provides a precise meaning of 

the concept zone of influence of a sample. It is a function 

given by a curve. It is increasing with increasing distance 

"h" that separates pairs of samples, such that the more 

distant the samples are from each other, the greater the 

difference between their levels, and therefore less continuity, 

or spatial dependence, between them [9]. Statistical methods 

are not influenced by the spatial location of the samples, 

considering them spatially independent, taking into account 

only the variability of the data set. Geostatistical methods, 

on the other hand, consider the spatial correlation among the 

samples. This function is widely used in geostatistics to 

determine how to explore spatially distributed patterns or 

continuities [10]. Each semivariogram is associated with a 

mathematical theoretical model and can be: Circular (Cir), 

Spherical (Esf), Exponential (Exp), Gaussian (Gauss), 

Rational Quadratic (QR), Cardinal Sine (SC), K-Bessel 

(KB) and Stable (Est) to the isotropic semivariograms 

experiments [10]. Each theoretical model explains spatially 

distributive behavior. We can estimate by (1): 

 

𝛾(ℎ) =
1

2
𝐸{[𝑍(𝑢) − 𝑍(𝑢 + ℎ)]2}                (1) 

 

The estimation is defined as the mathematical expectation 

(E) of the square of the difference between the values of the 

points in space, separated by the distance between vectors 

(h). The Gaussian variogram exhibits a parabolic behavior 

near the origin and represents extremely continuous 

phenomena. The amplitude in practice is approximately 

equal to A=a√3 and will reach a plateau C=c0+c 

asymptotically. The Gaussian model has the following (2): 

 

(h) = c(0) + c{1 − exp 𝑒𝑥𝑝 (−(ha2)}             (2) 
 

Fig. 2 is a neck geographic visual example of the 

variograms. From the equation we obtain the best fit for the 

ratio of sampled versus estimated values [11]. After the 

verification of the best fit, we evaluated the test of equality 

between the thermal averages between the tumor and healthy 

regions via the Student's T-test to verify the null hypothesis 

(3): 

𝐻0 =  𝜇ℎ𝑒𝑎𝑙𝑡ℎ𝑦    = 𝜇𝑡𝑢𝑚𝑜𝑟                (3) 

 

In effect, it is expected that the temperature around any point 

will not change significantly with respect to the centered 

value. However, when the comparison is made between 

healthy and tumor tissues, some difference is expected. 

 

 
Figure 2. Example of areas of demarcation for quantification temperature.  
P0 area, in the right side of image, is a nodule area. 

III. RESULTS AND DISCUSSION 

Initially we show the results of mean temperature and 

standard deviation for the main tumor classifications found 

in the 32 patients (Table I). The mean healthy thermal values 

are lower than the tumor values, regardless of tumor type. 

TABLE I.   MEAN VALUES IN HEALTHY AND TUMOR REGIONS BY 

TUMOR TYPE PRESENTED AT CELSIUS DEGREES (ºC) 

Tumor Type n 

Healthy Tumor 

Mean 
Standard 

deviation 
Mean 

Standard 

deviation 

Papillary carcinoma 7 28.92 0.22 31.68 0.09 

Cyst in the isthmus 1 30.31 1.79 32.36 1.92 

Atypia Sofun 4 32.79 0.74 36.98 0.88 

Follicular Neoplasm 2 31.02 0.23 36.98 0.88 

Multinodular goiter 2 34.89 0.10 39.14 0.19 

Adenomatoid nodule 1 34.29 0.12 39.53 0.17 

Follicular Adenoma 1 31.95 0.41 35.15 0.50 

Benign Follicular 
Nodule 

10 
31.88 0.10 36.46 0.30 

Colloid nodule 1 32.18 0.22 32.53 0.42 

Medullary Carcinoma 1 36.06 0.54 37.82 0.40 

Suspected malignancy 1 32.24 0.26 35.18 0.17 

Suspected malignant 
neoplasm 

1 
35.21 0.92 36.63 0.378 

a. Significative differences in temperature were verified for all tumor and healthy 

areas 

 

To assess how much the averages differ between the two 

temperature groups, healthy and tumor region, we applied 

the T-Student test which indicated significant difference 

with p-value << 5% between the thermal averages in the 

healthy region (32.64ºC) and tumor region (35.87ºC). The 

residuals for the test are independent, show normality 

according to the Shapiro Wilk test, and proved to be 

homoscedastic, given the Bartlett's test in which the 

variances in each of the sample groups are equal.  

That is, the null hypothesis of thermal equality around the 

samples does not hold, thus demonstrating a significant 

1469



  

thermal difference between the groups (Table I). Therefore, 

all the mean temperatures differ from each other. 

Furthermore, Fig.3 represents the spatial distribution 

around each case, tumor and healthy. The tumor temperature 

is significantly higher than the healthy temperature, but the 

behavior around the sample center in both cases follows the 

Gaussian variogram model.  

To better evaluate these thermal differences, it was 

performed confidence intervals by Turkey Test for the 

average of each of the points under analysis, which 

confirmed that the averages differ. In addition, it is verified 

the mean temperatures without interval intersection of the 

thermal results, in the internal, healthy point [31.29ºC -

33.99ºC], and in the analyzed point of the tumor tissue 

[34.66ºC- 37.67ºC].   

 

 
Figure 3. Spatial representation of temperature (degree Celsius) difference 
between healthy and tumor areas. Data represent the mean values for all 

volunteers. 
 

Distributions are calculated using actual thermal data. 

Each thermal pixel is associated with a u (x, y) coordinate. 

This information is being used in the modeling equation (1). 

The difference between healthy and tumoral cases is in the 

mean temperature and not in the type of the adjusted 

distribution, in this case the Gaussian distribution. 

Therefore, it was possible to verify the thermal concentration 

around the chosen point (healthy and tumor), confirming the 

result obtained in the literature [12]. This result implies the 

possibility of using more robust discriminant statistical 

techniques, since the sample behavior around each point has 

Gaussian properties. This spatial characteristic is 

independent of the classification of the region, whether 

healthy or tumor, as well as between classifications 

regarding the type of tumor. 

Additionally, three volunteer’s thermal data were 

analyzed (one malignant tissue, one benign and one healthy 

tissue). These data were important to demonstrate that 

regardless of the tumor classification and theoretical 

Gaussian model. 

In Fig.4 it is possible to visualize the compose result of a 

volunteer who was diagnosed with a Papillary Carcinoma, 

which is the most common neoplasm of the thyroid [7]. The 

results represent the spatial random sampling around the 

tumor (x and y coordinates) (A). Additionally, blue spots 

could be interpreted as coldest point as compared to the 

yellow and red sports in the center. On the other hand, 

Fig.4B represents the tumor thermal distribution  

 

 
Figure 4. Individual analysis of a malignant tumor. A) Spatial random 

sampling around tumor (left); B) thermal distribution of the tumor (right). 

 

In the same way, Fig. 5A and B showed the analysis for a 

volunteer with cyst in the isthmus and in Fig. 6A and B, for 

a healthy tissue.  

 

Figure 5. Individual analysis of benign nodule. A) Spatial random sampling 
around tumor (left); B) thermal distribution of the tumor (right). 

 

 
Figure 6.  Individual analysis of healthy tissue. A) Spatial random sampling 

around tumor (left); B) thermal distribution of the tumor (right). 
 

Finally, in Fig.7, we have the semivariogram of a 

volunteer diagnosed with Papillary Carcinoma (malignant), 

in which the theoretical model that had more 

correspondence, was the Gaussian Model, this process was 

repeated for each volunteer. The analyses performed about 

87.5% of the cases (28 patients), were Gaussian.  

 

A. Theoretical Gaussian Model 

 

The analyses were performed for each patient, generating 

two new samples, one in the point of the tumor (T), and 

another in the point in a healthy area of the patient (H). After 

placing the mean thermal values (in ºC), we also indicated 

the result of the variogram model found in each tumor 
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classification. In both sample (tumor tissue and health 

tissue) sets we obtained the Gaussian model, the latter with 

the best fit given in the semivariogram curve. 

 
Figure 7. Example of Gaussian Semivariogram Model of a volunteer  

diagnosed with a malignant tumor. 

 

Thus, for future work there are two possible techniques 

that can be applied in this work: a) Logistic regression, 

which applies the logistic sigmoidal function by evaluating 

the gradient of the function that minimizes the cost for a 

group of parameters [13]; b) Fisher's discriminant analysis 

which consists of forming discriminating functions from 

linear combinations of the original variables assuming p 

random variables with the goal of minimizing the variability 

between and within groups whose eigenvectors must satisfy 

matrix algebraic conditions. [14] 

The discriminant analysis consists of a useful technique in 

the classification of sample elements in a population, that is, 

to discriminate or classify objects through a rule [15]. The 

main objective is to evaluate the differences between groups 

and, through the characteristic found, allocate the new 

observations to one of the classified groups, so with the 

discriminant analysis it would be possible to tie a new 

variable and correlate the information obtained [15]. 

IV. CONCLUSION 

The healthy and the tumor tissues obtained 

semivariograms as a single theoretical Gaussian model. 

However, the mean temperatures at each point were distinct, 

in the healthy internal point ranging from 32.64ºC and in the 

tumor tissue point 35.87ºC (p-value << 5%). Therefore, with 

these data we show that the thermal distribution around the 

analyzed points concentrates spatially distributed 

independent of the chosen regions not presenting abrupt 

values, being smooth with similar spatial characteristics, 

which opens the possibility of using discriminant techniques 

in future studies to test the possibility of distinguishing 

benign and malignant tumors.  

Furthermore, the difference between the thermal averages 

centered on the analysis region (healthy and tumor tissue) 

was confirmed by observing the comparative intervals in the 

difference of the group mean levels using Turkey's Test.  

Thus, sweeping using the variogram technique to distinguish 

between regions (healthy and tumor) can be used as a 

screening, or active search for tumors, aiding in their early 

identification. 
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