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Abstract—Cardiovascular diseases(CVDs) are the world’s
leading cause of death. Endothelial Dysfunction is an early
stage of cardiovascular diseases and can effectively be used
to detect the presence of the CVDs, monitor its progress and
investigate the effectiveness of the treatment given. This study
proposes a reliable approach for the screening of endothelial
dysfunction via machine learning, using features extracted from
a combination of Plethysmography, Digital Thermal Monitor-
ing, biological features (age and gender) and anthropometry
(BMI and pulse pressure). This case control study includes
55 healthy subjects and 45 subjects with clinically verified
CVDs. Following the feature engineering stage, the results were
subjected to dimension reduction and 5-fold cross-validation
where it was observed that models Logistic Regression and
Linear Discriminant provided the highest accuracies of 84%
and 81% respectively. We propose that this study can be used
as an efficient guide for the non-invasive screening of endothelial
dysfunction.

Index Terms—Endothelial Dysfunction; Non-invasive Assess-
ment; Photoplethysmography (PPG); Digital Thermal Monitor-
ing(DTM); Cardiovascular Disease (CVD)

I. INTRODUCTION

World Health Organization (WHO) states that Cardiovas-
cular Disease (CVD) is the leading cause of death under the
age of 70 years [1]. Since the primary disorder affects the ar-
teries CVDs manifests as coronary heart disease, cerebrovas-
cular disease, congenital heart disease, deep vein thrombosis,
pulmonary embolism or many other heart conditions [2].

In recent years, there has been a renewed focus on pre-
ventive strategies, including screening to detect the disorders
at an early stage. This has lead to the recognition of a
close correlation between CVDs and the vascular health of
individuals [3] [4] [5]. Early detection of the former could
therefore pave the way for drastically reducing the premature
mortality from CVDs [1].

The endothelium is a one-cell thick layer lining the in-
nermost surface of the entire cardiovascular system from the
heart to the smallest of capillaries. Endothelial Dysfunction
(ED) could be considered as a vascular disease which occurs
due to the presence of cardiovascular risk factors such as high
blood cholesterol, high blood pressure, insulin resistance,
excessive alcohol consumption, smoking, lack of exercise,
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obesity, poor diet and genetics [2] [6]. ED can also be
highlighted as the first stage of cardiovascular diseases and
thus, an accurate and efficient approach to detect CVD before
it progresses into complications [7].

Several invasive and non-invasive methods have been
introduced in recent years for the detection of ED. While
Coronary Angiography serves as the gold standard for
the invasive detection method of ED it has some evident
drawbacks such as; the involvement of complex procedures,
high time consumption, risk of infection and vascular injury
[8]. Hence, non-invasive techniques such as Flow Mediated
Dilation (FMD), Peripheral Arterial Tonometry (PAT), Pho-
toplethysmography (PPG) and Digital Thermal Monitoring
(DTM) are considered as more fitting techniques. Despite
being widely used non-invasive assessment techniques FMD
and PAT have several impediments such as their high cost,
reproducibility and dependency on the operator [9] [10].
Thus, PPG and DTM are considered as the most emerging
approach for the evaluation of ED.

PPG measures the variations in blood flow within micro-
vascular tissue by utilizing the transmission or reflection
of an Infrared or Red light. This is possible due to the
high absorption of light in blood in comparison with the
surrounding tissue. Therefore, PPG is considered a good
indicator of endothelial dysfunction and stiffness in blood
vessels [11] [12].

The evaluation of ED using DTM is conducted alongside
the context of Reactive Hyperemia (RH). RH is the sudden
increase in the perfusion following the brief interval of is-
chemia, occlusion of the blood. This is an important function
of a healthy vasculature where the proper RH corresponds
to the good ability of autoregulation of an individual. Digital
Thermal Monitoring is a non-invasive measurement of body
temperature mainly focused on assessing vascular reactivity.
In this case, there exist a rise in the DTM signal due to
the temporarily elevated blood volume from releasing the
occlusion and a gradual decrease following the washout of
the vasodilators [13] [14] [15] [16] [17] [18].

In previous works, one study has investigated the relation-
ship between the PPG with ED [19] where they have iden-
tified features that are in correlation with the said vascular
injury. Furthermore, they illustrate the basic distinctions of
PPG waveforms, the most commonly seen artifacts integrated
with the acquired PPG signals and the relationship between
the PPG indices to non-communicable conditions such as
hypertension, diabetes, cardiovascular disease, vascular aging
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and arterial stiffness. However, they have concluded the study
at the feature extraction stage and have not focused on the
diagnosis of CVD.

Another group of researchers has focused on the analysis
of PPG with ED where they have proven the two hypotheses;
the capability of a machine learning (ML) approach to screen
ED using PPG features and the ability to improve the said
classification using the subject anthropometric features [9].
They have achieved a classification accuracy of 71% and
a recall of 67% and have chosen Support Vector Machine
(SVM) as their choice of the classifier. Nonetheless, the
group plans to extend the study with an exploration of a
larger dataset where it currently compromises a relatively
smaller dataset of 59 subjects.

Some experimentation has explored the relationship be-
tween the ED and DTM signals where vascular function
and the sudden rise in temperature trailing an occlusion of
blood flow have been analyzed [13] [14]. One study has
generated a simulation of thermal response of a fingertip to
blood flow rate during RH and has analyzed the variation
of the DTM waveform with respect to its morphology,
time delays and temperature variations and have assessed
the sensitivity of each of these indices to RH [13]. As a
result they have identified Temperature Rebound (TR) and
Finger start temperature; skin temperature (Tss) as the most
significant parameters to assess RH. Another research has
discussed the generation of the Zero Reactivity Curve (ZRC)
and has further proven the significance of Vascular Reactivity
Index (VRI); adjusted Temperature Rebound (aTR) to the
evaluation of endothelial function [14].

Furthermore, some researchers have focused on the com-
bination of DTM and Peripheral Arterial Tonometry (PAT)
technologies and have scrutinized their correlation to ED
through a statistical analysis [20] [21]. They have identified
the DTM indices such as Temperature rise and fall rates
and Area Under the Curve (AUC) and PAT Reflection Index
as most sensitive to ED. However, the classification has
been done on subjects with and without diabetes and the
specific conditions of the vascular system have not yet been
investigated.

This paper proposes an in-detailed evaluation of ED using
a combination of signals from PPG and DTM for the
first time where it extends the previous studies which are
solely based on either PPG or DTM technologies. This
also overcomes the problems seen with PAT due to its
considerable sensitivity towards motion, high cost and lack
of availability in global context [22]. Furthermore, this study
contains a substantially reliable approach to classify the
subjects suffering from ED not only through the sequence
of bio-signals but also based on the consideration of the
anthropometric features of the subject. This leads to the
provision of accurate results to a diverse demographic. Hence
this research can also be recognized as the first research of
using PPG,DTM and anthropometric features together for
ED evaluation. Through the combination of these features,
we hope to validate the hypotheses that this consolidation

has higher accuracy, sensitivity and specificity levels in
comparison with the other similar studies in its ability to
assess ED.

II. METHOD

A. Data Collection Procedure

The data collection program, under the ethical approval
(Ethics Review Number: EC/18/208) from the Ethics Review
Committee (ERC) of the Faculty of Medicine, University
of Colombo, was conducted in Asiri Surgical Hospital,
Colombo 00500. The dataset contains 100 samples (age
range:20 to 60 years, male: female of 56:44) of 55 healthy
subjects and 45 subjects having risk factors for CVD. A
structured questionnaire was used to gather data on the
medical history, daily dietary and exercise habits and the
existence of CVD risk factors such as; hypertension, diabetes
and hyperlipidemia. A consultant cardiologist concluded the
existence of ED conditions in each subject. Prior to the
signal acquisition procedure, the participants were requested
to refrain from eating, smoking, alcohol consumption and
taking medications for at least 6 hours. They rested for 30
minutes and were kept in the supine position for 15 minutes.

The PPG signals were taken using a Pulse Oximeter
probe, which utilizes both Infrared and Red channels and a
thermal sensor was used to acquire the DTM signals. The
PPG and DTM probes were attached to the index finger
and middle finger of each hand of the subject respectively.
The baseline signals were recorded for 3 minutes which
was then followed by the recording of signals during the
occlusion of a pressure cuff around the right brachium for
5 minutes. Finally, the signals after the deflation of the cuff
were acquired for another 7 minutes. Throughout the process,
the subjects remained in the supine position with closed eyes
and minimum possible movement to reduce the occurrence
of motion artifacts in the bio-signals.

B. Preprocessing

The signal processing techniques mentioned in the patent
[23] by the same research group were used for PPG based
identity pulse generation.

The raw signals acquired were immediately followed by
a thorough preprocessing stage to denoise the signals. The
implementation of the digital filters used in the preprocessing
stage, the feature calculation using PPG and DTM signals in
the feature engineering stage and the training of machine
learning algorithms were conducted using MATLAB soft-
ware (The MathWorks, Inc., Natick, MA, USA).

The acquired signals were analyzed in both time and
frequency domains and the powerline interferences were
removed via Butterworth notch filters. The PPG signals were
then subjected to a two-stage wavelet filtering of bior1.5 level
16 and db10 level 16 for further denoising and elimination
of motion artifacts respectively.

Initially, the acquired DTM signals compromised of con-
siderable noise. In contrast to the thermal signal processing
technique used in [23], a different preprocessing method was
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used as follows. Each signal was sent through an intensive
pre-processing procedure of outlier removal, median filtering
and piecewise smoothing where each piece of the signal was
filtered using a Savitzky-Golay filtering. Finally, all partitions
were combined using the modified Akima (Makima) inter-
polation.

C. Feature Extraction

Following the preprocessing of the PPG and DTM signals,
the signals acquired need to be studied to extract the signal
properties that correlate with the aimed classification. The
purpose of this study is to emphasize the classification
accuracy gain after combination of features from two bio-
signal domains. Therefore, most of the features considered
in this research were validated in previous studies.

1) PPG Feature Extraction: A single PPG pulse consists
of 2 phases; the anacrotic phase with the rising edge cor-
responds to the systolic state of the cardiac cycle and the
catacrotic phase with the falling edge represents the diastolic
state. The notch is commonly known as the dicrotic notch
pin-points the closing of the aortic valve and has proven to
be an important indication of endothelial health.

Additionally, the first derivative of the waveform; Velocity
Plethysmogram (VPG), or the second derivative waveform;
Acceleration Plethysmogram (APG) also provides many
significant features for the indication of ED. The APG
waveform consists of four indicative waves; a (early systolic
positive wave), b (early systolic negative wave), c (late
systolic re-increasing wave), d (late systolic re-decreasing
wave) and e (early diastolic positive wave) [19] and the
heights of these waves hint the endothelial function of an
individual.

The overall features from PPG signals were obtained either
directly from the PPG waveform or the VPG waveform or the
APG waveform. Additionally, spectral indices were also in-
tegrated into the PPG features [9] [19]. Fig.1 illustrates PPG,
VPG and APG waveforms with the parameters used in the
calculation of features. Table I. depicts the features obtained
using PPG signals and a summary of their significance.

2) DTM Feature Extraction: The DTM signals were an-
alyzed under the context of RH which includes three main
partitions; the baseline signal acquired in the resting stage,
the DTM signal under the occluded state and the DTM signal
after the deflation of the pressure cuff [13] [18]. Following
the occlusion of the pressure cuff, the temperature of the
measured site drops due to the lack of blood flow. This
negative peak is named the Nadir’s peak and is used in the
calculation of many DTM features correlating ED. Then the
deflation of the pressure cuff causes a sudden rise in the
temperature resulting in a spike of temperature called the
’temperature rebound’.

In addition to the DTM signal curve, the DTM feature
extraction procedure involves the generation of Zero Re-
activity Curve (ZRC) which depicts the variation of the
subject’s temperature if there exists no vascular reactivity
to RH [14] [17]. This curve acknowledges the baseline

Fig. 1. PPG, VPG and APG waveforms and the significant parameters
related to ED whereas A, B, C, D, E represent the systolic peak, dicrotic
notch, diastolic peak, peak to peak interval and crest time respectively and
a,b,c,d,e are the indicative waveforms of the APG waveform.

TABLE I
PPG SIGNAL FEATURES AND THEIR REPRESENTATION

Feature Significance
Systolic
Amplitude

The pulsatile changes in the blood volume.
This relates to the stroke volume and the local
vascular distensibility [24] [19].

Peak to Peak inter-
val

The interval between two consecutive systolic
peaks. This also depicts the full cardiac cycle
[19].

Pulse Width The width of the PPG pulse. This is de-
termined at the height equal to half of the
systolic amplitude and is a good indicator of
the systolic vascular resistance [25] [19].

Pulse Area The total area under the curve of the PPG
pulse [19].

Crest Time The interval between the foot of the PPG
pulse to the systolic peak [19].

Augmentation In-
dex (AI)

The effect of the wave reflection on the arte-
rial systolic pressure. The early return of the
reflected waves due to decreased compliance
of the blood vessels can be detected using this
index [19].

Stiffness Index
(SI)

The stiffness in the subclavian artery. The
height of the subject is said to be proportional
to the time taken for the blood to travel from
the root of the subclavian artery to the site
of measurement. This is equal to the interval
between the systolic peak and the diastolic
peak [26] [19].

Ration b/a Represents arterial stiffness and distensibility
[27] [19]. This positively correlates to the
Framingham risk score, a popular method
used to estimate CVDs [28].

Ratio c/a Represents decreasing arterial stiffness [19].
Ration d/a Represents left ventricular after-load and ar-

terial stiffness [19].
Ratio e/a Represents arterial stiffness [19] [29].
Ratio (b-c-d-e)/a Represents potential risk of atherosclerosis

and vascular aging [19] [30].
Ratio (b-e)/a Alternative for Ratio (b-c-d-e)/a in cases of

absent c and d points [19] [30].
Ratio (c+d-b)/a Represents vascular aging [19]
PPGi (Spectral in-
dex 1)

Sum of the amplitudes of the first three peaks
in frequency domain

PPGVLFi
(Spectral index 2)

Amplitude of first peak/PPGi
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TABLE II
DTM SIGNAL FEATURES AND THEIR METHOD OF CALCULATION

Feature Calculation
Temperature
Rebound (TR)

The difference between the maximum tem-
perature after the deflation of the cuff and the
baseline signal temperature [13] [14] [15].

Nadir Peak (NP) The difference between the maximum tem-
perature after the deflation of the cuff and the
minimum temperature after the occlusion of
the cuff [13].

Time to
Temperature
Rebound (TTR)

The interval between the NP and the TR [13].

Area Under the
Curve (AUC)

Area under the DTM signal curve within the
time period of NP to TR [13] [15].

Finger start tem-
perature (Tss)

Equals to the skin temperature at the baseline
signal acquisition.

Adjusted
Temperature
Rebound (aTR)

The maximum value of the Reactivity curve
(RC). RC refers to the difference between the
DTM signal after deflation and the ZRC [14]
[17] [31].

Maximum of the
slope(RC)

Maximum value of the slope of the RC curve.

Area under the Re-
activity Curve

Total area under the RC.

Fig. 2. DTM waveform during the resting state, occluded state and deflated
state and significant parameters related to ED whereas A, B, C, D, E
represent Temperature rebound, Nadir to peak, Baseline temperature, Area
Under the Curve and Time to temperature rebound respectively.

temperature of the subject, room temperature and the slope
of the temperature fall during the occlusion. A total of 8
features including the skin temperature of the finger which
was measured during the test were extracted after studying
the DTM morphology. Fig.2 demonstrates the parameters and
features calculated using the DTM signal. Table II. represents
the DTM features and their method of calculations.

3) Anthropometric Features: Recent studies have ob-
served that PPG signal morphology displays variations based
on certain biological and anthropometric features of each
person [9] [32]. Thus, trailing the completion of feature
calculation using PPG and DTM signals, the obtained feature
set is then integrated with 4 anthropometric features collected
from each subject; gender [33], age [34], pulse pressure
[35] and BMI. Therefore, the algorithm was accustomed
to obtain considerably accurate predictions even for diverse
demography.

D. Dimension Reduction and Classification

After obtaining the combination of 28 features from the
PPG, DTM signals and individual anthropometry, it is vital
to distinguish the features that are most significant for the
aimed classification. Thus, three phase model training was

(a) (b)

Fig. 3. Confusion matrices for Logistic Regression (a) and Linear Discrim-
inant (b)

conducted with PPG based features, DTM based features and
combination of PPG,DTM and anthropometric based fea-
tures. Further to this, after the normalization of the extracted
features, they were subjected to dimension reduction using
Principal Component Analysis (PCA). The PCA was used as
a dimensionality reduction technique during model training
and prediction. Obviously, PCA does not reduce the number
of features to be obtained at the time of feature extraction,
but what is fed to the model. With PCA, the original feature
set of 28 features was reduced to 12 components where it
was observed that 90% of the total variance is contained
within them.

The reduced features were then subjected to 5-fold cross-
validation to avoid over-fitting of the classification model
which occurs when trained and tested on the same dataset.
Finally, 23 classification models in MATLAB were trained
with the reduced features and the accuracy of each model was
tested along with some performance evaluation parameters in
machine learning.

III. RESULTS AND DISCUSSION

The dataset used for the training of the classification
models consists of 55 healthy subjects and 45 subjects with
ED. The training of the classification models was conducted
subsequently to the 5-fold cross-validation which uses each
sample in both train and test sets in different trials. Hence,
this separation of test and train sets successfully avoids the
over-fitting of the classification model to the given set of
data. The reason behind the selection of cross-validation
over hold-out validation is because of the comparatively
smaller number of samples for which the classification was
performed. In cases of smaller datasets, the application of
hold-out validation results in the training of classifiers which
are heavily biased on the seed of the partition; the split of
the train and test datasets at that specific moment.

The ML models supplied with MATLAB are derived on
relatively simple SVM, KNN, Tree, and Regression methods
compared to deep learning models. The simplicity of the
models provided, approximately balanced binary samples
and the above mentioned k-fold cross validation led to select
a better performance model even with a relatively small
dataset. It was observed that the machine learning models
Logistic Regression (LR) and Linear Discriminant (LD)
obtained the highest accuracy values for the classification of
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TABLE III
A COMPARISON OF THE ACCURACY, SENSITIVITY, SPECIFICITY,

PRECISION, RECALL AND F1 SCORE VALUES BETWEEN LR AND LD.

LR LD
Accuracy 84.0% 81.0%
Sensitivity 80.0% 73.3%
Specificity 87.3% 87.3%
Precision 83.7% 82.5%

Recall 80.0% 73.3%
F1 score 81.8% 77.6%

subjects with and without ED. Moreover, apart from the top 2
models Ensemble Subspace Discriminant, Ensemble Bagged
Trees and Cosine K-Nearest Neighbour (KNN) obtained the
highest accuracies respectively. Fig.3 illustrates the confusion
matrices obtained for the models with the highest accuracies;
LR and LD. Table III. summarizes the confusion matrix
values into accuracy, sensitivity and specificity figures.

Even though the currently utilized dataset remains approx-
imately balanced with healthy and diseased (with ED) sub-
jects, for extended verification of the algorithm parameters
such as precision, recall and F1 score was calculated. This
is due to the usefulness of the F1 score in indicating a more
authentic representation of the classification models in the
case of uneven distribution. As indicated in Table III. LR
has obtained the highest values for precision, recall and F1
score.

It is important to note that due to the application of cross-
validation the evaluation parameters given in the previous
sections display slight variations with the different partitions
of the dataset and thus, Table III. is a representation of the
average values of multiple iterations of the machine learning
algorithm.

As clearly seen in Table IV. PPG and DTM based features
in separation generate low accuracy models in contrast to
the models derived by the combination of PPG, DTM and
anthropometric features.

The dimension reduction using PCA was conducted to
eliminate the redundancy due to the features correlated with
each other. Such superfluous features can lead to a decline
in the accuracy of the classification due to misleading the
classifier being trained. Prior to this stage, all features of
the original matrix were normalized in order to assign equal
standard deviations and thus, the same weightage was given
to all features for which PCA is calculated.

As more than 90% of the total variance of all features
remain within the most prominent 12 Principal Components
(PCs) it can be deduced that these components are an
adequate representation of the overall original feature matrix
with high dimensionality. The results in Table IV. further
justifies the selection of 12 principal components over other
approaches such as; no application of PCA, selection of 14
components containing 95% of total variance and selection
of 8 components containing 80% of the total variance.

When analyzing the obtained results it can be observed
that the model LR surpasses the other classification models

in all the evaluation parameters considered. Moreover, it
displays a 3% raise with respect to the model with the
second-highest accuracy; LD.

TABLE IV
ACCURACY COMPARISON OF CLASSIFICATION MODELS

Model PPG
Only

DTM
Only

PPG+DTM
Without
PCA

8
PCs
(80%
Var.)

12
PCs
(90%
Var.)

14
PCs
(95%
Var.)

Logistic
Regression
(LR)

63.0% 59.0% 68.6% 81.7% 84.0% 75.0%

Linear
Discriminant
(LD)

62.0% 58.0% - 83.0% 81.0% 79.0%

Ensemble Sub-
space Discrim-
inant

66.0% 58.0% 77.7% 83.0% 78.0% 80.0%

Ensemble
Bagged Trees

57.0% 58.0% 78.7% 76.3% 76.0% 74.0%

Cosine KNN 53.0% 55.0% 77.7% 82.0% 76.0% 70.0%
Linear SVM 51.0% 58.0% 78.0% 79.3% 79.0% 80.0%
Coarse Tree 51.0% 57.0% 79.3% 76.3% 76.0% 70.0%

IV. CONCLUSION AND FUTURE WORK

This is the first attempt of using a combination of PPG,
DTM and anthropometric based features for detecting ED
to the best of our knowledge. The accuracy(84%), sensi-
tivity(80%) and specificity(87%) values obtained from the
classification using the Logistic Regression model confirm
that the proposed combination of PPG and DTM signals
along with the subject anthropometry, provides an assessment
of ED of considerable accuracy when considering consultant
cardiologist’s diagnostic opinion of ED as the baseline. By
considering PPG and DTM based features as a whole, we
can build up strong classifiers for ED detection than that of
the weak classifiers built separately. This combination also
produces meticulous results to a wider demographic due to
the additional consideration of subject anthropometry.

The utilized dataset contains samples of 55 healthy sub-
jects and 45 subjects with ED. Therefore, with higher number
of samples it could be assumed increased sensitivity and
accuracy figures. Additionally, a dataset with more samples
would pave way for much complex machine learning meth-
ods such as a Neural Network to be implemented which has
the potential to further boost the accuracy of the classifi-
cation. For future extensions of this work, the validation of
this method using a more commonly used clinical diagnostic
examination such as the infusion of vasoactive agents is
suggested. Likewise, due to the effect of skin color on the
IR transmission in PPG, the integration of consideration of
each subject’s skin complexion into the signal processing
algorithm would elevate the practical applicability of this
approach in the global context.

In conclusion, the approach proposed in this study to
screen ED using the non-invasive signal acquisition of PPG
and DTM with the subject’s anthropometry proves to be a
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considerably accurate and lucrative avenue for the future of
medical diagnosis.
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