
Learning Cellular Phenotypes through Supervision

Helen Theissen1, Tapabrata Chakraborti1, Stefano Malacrino1,
Korsuk Sirinukunwattana1,2, Daniel Royston2,3 and Jens Rittscher1,2

Abstract— Image-based cell phenotyping is an important and
open problem in computational pathology. The two principal
challenges are: 1) making the cell cluster properties insensitive
to experimental settings (like seed point and feature selection)
and 2) ensuring that the phenotypes emerging are biologically
relevant and support clinical reporting. To gauge robustness,
we first compare the consistency of the phenotypes using self-
supervised and supervised features. Through case classification,
we analyse the relevance of the self-supervised and supervised
feature sets with respect to the clinical diagnosis. In addition,
we demonstrate how we can add model explainability through
Shapley values to identify more disease relevant cellular
phenotypes and measure their importance in context of the
disease. Here, myeloproliferative neoplasms, a haematopoietic
stem cell disorder, where one particular cell type is of
diagnostic relevance is used as an exemplar. The experiments
conducted on a set of bone marrow trephines demonstrate
an improvement of 7.4 % in accuracy for case classification
using cellular phenotypes derived from the supervised scenario.

I. INTRODUCTION

Methods for quantifying cellular morphology and cell
phenotyping typically fall into two categories: Cell classi-
fication [1], [2] and clustering. Both methods require feature
extraction and their performance depends on the quality of
the extracted features. However, classification tasks require
extensive annotations at the cell level. Unsupervised learn-
ing based on generative models is a popular methodology
to extract morphological features. Ruan and Murphy [3]
evaluate the performance of different autoencoder models
based on the cell outline for shape reconstruction. They
report that a higher dimensionality of the latent space in
general benefits the models. Recently, a study on quantifying
the morphological heterogeneity of cells and nuclei was
published [4]. This approach provides classification, subtyp-
ing and visualisation of cells based on the cell contours.
Sirinukunwattana et al. present a methodology for assessing
megakaryocytes (MKs) relying on clustering to identify a set
of representative phenotypes [5] for a single cell type.

Myeloproliferative neoplasms (MPN) are haematopoietic
stem cell disorders and rare cancers [6]. Disease compli-
cations may include thromboembolic events such as stroke
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Fig. 1: Overview of the supervised feature extraction: Whole
slide images pass through a detection and segmentation pipeline
described in [5]. This yields image patches containing a megakary-
ocyte (MK) at the centre excluding the tissue background. The
images are fed through a preprocessing stage including histogram
equalisation and resizing before reaching the ResNet18 block. Su-
pervision is provided by slide-level labels. The cellular phenotypes
are extracted using clustering analysis. The case classification model
is based on the proportion of phenotypes in each whole slide image.

and heart attack. In the most severe cases, MPN patients
can progress to frequently fatal bone marrow failure due to
myelofibrosis and acute leukaemia [7]. Thus, early detection
of MPNs is crucial especially in patients with high risk
of bone marrow failure. However, the histological feature
selection and quantification is subjective and not sufficiently
defined to allow an accurate quantification [8]. In the context
of MPNs, we are interested in quantifying the appearance of
a single MK cell type whose morphology can vary consid-
erably within the same whole slide image. Morphological
criteria used for characterising megakaryocytes include cell-
size, nuclear complexity, irregularity and spatial clustering.
This makes cellular phenotyping of MK cells challenging.

Recently, Shapley values have gained attention in the
context of model explainability. Lundberg et al. propose
SHAP as a method to interpret models intuitively [9]. This
method was adapted to explain the effects of patient features
on the prediction of intraoperative hypoxaemia [10]. Recent
approaches used handcrafted features to quantify cell mor-
phology for classification [11], [12]. We posit that traditional
handcrafted features lack the degrees of freedom to represent
the complex morphology of MKs. Therefore, we consider
deep features. Identifying features by optimising the image
reconstruction loss does not make use of side information on
the disease into account. Ferlaino et al. [13] demonstrate that
supervised deep features extracted from cell classification
capture intra-class variability. Thus, we use existing slide-
level labels as a surrogate to train a cell classifier. Thus
the extracted features focus on the differences between MK
morphologies associated to different disease states. A brief
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overview of the proposed method is presented in Fig. 1,
which is further elaborated in the next section.

Thus, the contributions of this paper are threefold: 1)
Supervised feature extraction preserves intra-class hetero-
geneity, so that applying a clustering analysis improves the
diagnostic relevance of the resulting cellular phenotypes.
2) By comparing supervised and unsupervised features we
demonstrate that our supervised feature extraction approach
increases their relevance without sacrificing robustness. 3)
We use Shapley values to assess the importance of the
extracted cellular phenotypes.

II. METHODOLOGY

We describe the methods for extracting supervised features
and assessing feature relevance by applying Shapley values.
The MK cells were extracted from the bone marrow trephine
slides using the procedure described by Sirinukunwattana et
al. [5]. A deforming autoencoder was applied to the MK
patches to extract a latent representation based on minimising
the reconstruction loss.

A. Increasing Relevance Through Supervision

Our objective is to extract a representation of MK cells
with high relevance to the disease. As our data does not
provide cell level labels this is achieved by using the slide
level label for supervision in a weakly supervised setup. That
is, we do not know to which degree a MK cell is abnormal,
but we do know whether it stems from a diseased sample or
not. Therefore, we classify MKs into two groups: the group
of cells belonging to “normal” reactive samples and diseased
samples. The feature extractor comprises a preprocessing
stage and a ResNet18 binary classifier.

As the whole slide images suffer from non-uniform stain-
ing across slides and within the slides, we applied histogram
equalisation on each channel (RGB) separately to account
for colour variation. The background around the cells is
excluded by using the segmentation mask obtained from
the previous cell segmentation. The ResNet18 block is pre-
trained on ImageNet and then fine-tuned by classifying
the MK cells into diseased and non-diseased classes. The
resulting prediction for each cell can be viewed as the
likelihood of a cell belonging to a diseased sample. MK cell
features can be extracted from the last convolutional layer
which results in a 512-dimensional feature vector.

B. Phenotyping through Cluster Analysis

The supervised and unsupervised features are fed to clus-
tering analysis to identify cell phenotypes. In order to achieve
comparable results, this stage should treat both sets similarly,
that is the number of clusters should be the same and derived
from the same clustering algorithm. For this reason, K-Means
clustering is applied to identify clusters in both feature sets
where each cluster will represent a cell phenotype.

As the auto-encoder yields rotationally variant features by
definition, we decided to use the same mean feature vector
chosen as Sirinukunwattana et al. [5]. It is composed of the
feature sets for the image, the 180 ◦ rotation, the horizontal

TABLE I: Bone marrow trephine dataset

Number Total cohort Reactive ET PV MF
Slides 131 43 48 19 26
Cells 53866 7332 17724 12486 16324

and vertical flip. In contrast to this, we use the ResNet fea-
tures without applying this procedure. The reason for this is
that even though CNN features are not inherently rotationally
invariant, they can be trained to become rotationally invariant
using appropriate data augmentation during training.

The auto-encoder-based and ResNet-based feature extrac-
tors render feature vectors of 128 and 512 dimensions,
respectively. To reduce the run time of the clustering, dimen-
sionality was reduced to 30 dimensions for both, a trade-off
between reducing the dimensionality enough to decrease the
run time sufficiently, without losing too much information
from the extracted features. Subsequently, the feature vectors
were fed to K-Means clustering to obtain the cell phenotypes.

C. Feature Relevance Metric

In order to measure the relevance of the features to this
disease we use two methods: 1) Case classification and
2) Shapley values. In terms of case classification, we can
determine the general relevance of the features by using the
traditional classification metrics such as accuracy, precision,
recall and F1 score. Those inform on how well the classifier
can make a prediction based on the input feature set. The
input features are defined as the proportion of MK cells with
each phenotype (cluster) in a slide.

Shapley values on the other hand have been applied
successfully in other work [10] to gauge the importance
of features in a machine learning model. They stem from
coalitional game theory and allow to calculate the individual
gain of a player in a cooperative game. Here, we use them
to compare the importance of the cell phenotypes in context
of the disease using the aforementioned case classification
model trained on the self-supervised and supervised features.

III. EXPERIMENTS

A. Bone Marrow Trephines from the Oxford Archive

In total 131 bone marrow trephine samples were sourced
from the OUH NHS Foundation Trust archive which in-
cluded 45 ET, 18 PV, 25 MF and 43 reactive or non-
neoplastic samples. The latter group comprises patients with-
out any evidence of either an underlying myeloid disorder
nor a bone marrow malignancy. The other patient groups
were selected based on an established or newly-diagnosed
MPN according to the latest WHO classification scheme
from 2016. The dataset we used for our experiments contains
53,866 MK cells of which more than 50 % were manually
validated by a human expert. (Ref. Table I)

B. Training the Feature Extractor

The feature extraction stage was trained using 5-fold cross-
validation (CV). Each CV set contains 27 slides with an
approximately equal number of cells. It was ensured that all
MPN disease subtypes were uniformly distributed across the
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five sets. As evaluation metrics we used accuracy, precision,
recall and AUC-ROC. Data imbalance was dealt with by a
weighted random sampling in each batch. Parameter updating
was done using the ADAM optimizer. Binary cross entropy
loss was minimised during training. The batch size was set to
64 and the learning rate to 0.0001. We trained the model for
100 epochs. During training data augmentation was applied
to reduce overfitting. Since cell size and shape potentially
carry biological meaning we avoid transformations which
change these. Instead we use colour perturbation, rotation,
noise and horizontal and vertical flips.

C. Cellular Phenotyping and Cluster Quality

For this part we use the previously used CV sets. This
means we extract features of the training set from the auto-
encoder and ResNet18. These are then fed into K-Means
clustering after dimensionality reduction through PCA. The
hyper-parameters of K-Means are determined using the fea-
tures extracted from the validation set. The cluster quality is
assessed based on the silhouette score which is a standard
metric for K-means. Subsequently, the optimal setting is
chosen for cell phenotyping and applied to the test set. The
procedure is repeated across all CV sets.

D. Case classification and Feature Relevance

For the case classification the proportion of cells of each
phenotype in a slide is defined as the input feature vector.
We chose a support vector machine as our sample size
is close to the number of dimensions. Again, we partition
the data into the previous CV sets and training, validation
and test sets, respectively. Performance of the case classifier
depending on the set of features, provides a measure for the
relevance of the self-supervised and supervised features with
respect to the disease. We calculate the Shapley values for
each cell phenotype. Since the model-agnostic functionality
is applied here, the resulting Shapley values are not an exact
calculation, but rather an approximation. Nevertheless, they
yield a description for the individual relevance of the cell
phenotypes in context of the prediction.

IV. RESULTS AND ANALYSIS

This section deals with the performance and results of
the supervised feature extraction using a ResNet18 structure,
the clustering analysis for cell phenotyping and the resulting
relevance of the supervised and unsupervised features.

A. Feature Extraction

Table II depicts accuracy, recall and precision for applying
the trained feature extractor on the test sets of the five
CV sets A, B, C, D and E. The mean across all test sets
is 88.7 %, 91.8 % and 96.2 %, for accuracy, recall and
precision, respectively.

B. Clustering and Cluster Quality

In order to find a reasonable number of clusters we use k-
means clustering on the training set and subsequently applied
the trained method on the validation set. The silhouette score
was chosen as the performance metric. It ranges between

TABLE II: Results for the supervised feature extractor

CV set accuracy recall precision
A 0.8753 0.9099 0.9421
B 0.8556 0.8704 0.9461
C 0.8452 0.8508 0.9644
D 0.9340 0.9485 0.9762
E 0.9226 0.9315 0.9816

Overall 0.887 0.9184 0.9621

(a) Number of clusters (b) Percentage of training set

Fig. 2: Left: Performance of k-means clustering on the validation
set: The silhouette scores with respect to the number of clusters
is depicted for supervised (red) and self-supervised (blue) features.
Right: Average trace of the pair confusion matrix obtained from
fitting the clustering to 10 different subsets of training data for
varying fractions and applying it to the validation data.

-1 and +1, where a high negative result means that data
points have been assigned to the wrong clusters. Values
close to zero indicate overlapping clusters. The silhouette
scores using self-supervised and supervised features against
cluster number is presented in Figure 2a. The reason for the
silhouette score staying close to zero, might be the fact that
only one cell type is examined and thus cluster boundaries
are somewhat arbitrary. This is especially the case for an
auto-encoder, which is trained to find a latent representation
to reconstruct the image. In contrast, the supervised setting
enforces features which separate cells which are more preva-
lent in diseased from ones in normal slides.

In order to gauge the stability of the resulting clusters
we compared 10 different random states of the K-Means
initialisation and clustering fitted to 10 different subsets
of the training data. The pair confusion matrix takes into
account all pairings of data points of the validation data
and counting those pairs which were assigned to the same
or different clusters under both clusterings. For varying
initialisations, on average 96 % and 93.7 % of all pairings
were assigned to correctly for unsupervised and supervised,
respectively. Figure 2b shows the average trace of the pair
confusion matrix for a varying size of the training data
subset. As expected the clustering performance increases as
more training data is being used. Again, the self-supervised
features perform slightly better than the supervised features.

C. Feature Relevance

A slide representation composed of the proportion of
cells belonging to the 18 cell phenotypes is used as the
feature vector for case classification, where the label 0 and 1
corresponds to reactive and MPN diagnosis, respectively. C,
γ denote the regularisation parameter, the kernel coefficient
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TABLE III: Hyperparameter tuning for all CV sets (A, B, C, D
and E): self-supervised (left) and supervised (right)

CV C γ accuracy
A 100 0.0001 0.89
B 100 0.0001 0.82
C 10 0.001 0.86
D 100 0.001 0.84
E 10 0.001 0.93

CV C γ accuracy
A 10 0.001 0.95
B 100 0.001 0.95
C 10 0.001 0.95
D 10 0.001 0.93
E 10 0.001 0.93

TABLE IV: CV case classification performance on the test sets

CV (self-supervised) recall precision f1-score accuracy
A 0.85 0.79 0.81 0.85
B 0.79 0.84 0.77 0.78
C 0.85 0.81 0.82 0.85
D 0.78 0.76 0.77 0.81
E 0.95 0.89 0.91 0.93

All 0.844 0.818 0.816 0.844

and the radial basis function kernel was used. Table III shows
the optimal setting for SVM hyperparameters for all CV
sets based on self-supervised (left) and supervised features
(right), respectively. Subsequently, the optimal setting was
used on the test set as depicted in tables IV and V for self-
supervised and supervised, respectively. The macro-average
is used for precision, recall and F1-score. The performance
results for the supervised features show a significant im-
provement when compared to the self-supervised features.

D. Cell Phenotype Importance

For assessing the importance of the individual phenotypes
we use Shapley values. For each slide we obtain 18 Shapley
values, one per phenotype, which sum up to the classification
model output. Figure 3 depicts the mean Shapley value
of each input feature of the case classification for self-
supervised 3a and supervised 3b features with respect to the
true class label. The increase in average impact across all
CV sets and phenotypes on the model output is 0.198 for
the supervised compared to self-supervised setting.

V. CONCLUSION

We demonstrate how identifying cellular phenotypes can
benefit from additional clinical variables such as diagnosis
by using supervised feature extraction. First, we compared
self-supervised and supervised features with respect to clus-
tering robustness. Through case classification we assessed
the relevance of the supervised and self-supervised features
in context of disease. By exploiting model explainability
based on Shapley values the individual importance of the
identified cellular phenotypes to the clinical problem was
measured. The experiments conducted on the MK cells of

TABLE V: CV case classification performance on the test sets

CV (supervised) recall precision f1-score accuracy
A 0.93 0.81 0.85 0.89
B 0.94 0.97 0.96 0.96
C 0.85 0.89 0.85 0.85
D 0.97 0.94 0.95 0.96
E 0.92 0.92 0.92 0.93

All 0.922 0.906 0.906 0.918

(a) Self-supervised features (b) Supervised features

Fig. 3: Impact of phenotypes on the slide-level classifier output
(mean Shapley value) of each feature on the case classification:
The value zero corresponds to the mean model output across all
predictions. Negative values counteract a correct prediction of the
true class label. On average the positive impact of each phenotype
is 0.03 and 0.041 for self-supervised supervised features making an
increase 0.198 for all phenotypes for the supervised setting.

a bone marrow trephine dataset showed an improvement of
7.4 % in accuracy for the case classification using cellular
phenotypes from the supervised scenario. These promising
results demonstrate that supervision using clinical side infor-
mation can be used to inform cellular phenotyping through
supervised feature extraction.
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