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Abstract— Deep learning (DL) has emerged as a powerful tool
for improving the reconstruction quality of accelerated MRI.
These methods usually show enhanced performance compared
to conventional methods, such as compressed sensing (CS) and
parallel imaging. However, in most scenarios, CS is imple-
mented with two or three empirically-tuned hyperparameters,
while a plethora of advanced data science tools are used in
DL. In this work, we revisit `1-wavelet CS for accelerated MRI
using modern data science tools. By using tools like algorithm
unrolling and end-to-end training with stochastic gradient
descent over large databases that DL algorithms utilize, and
combining these with conventional concepts like wavelet sub-
band processing and reweighted `1 minimization, we show that
`1-wavelet CS can be fine-tuned to a level comparable to DL
methods. While DL uses hundreds of thousands of parameters,
the proposed optimized `1-wavelet CS with sub-band training
and reweighting uses only 128 parameters, and employs a fully-
explainable convex reconstruction model.

I. INTRODUCTION

Slow data acquisition remains a challenge for MRI, requir-
ing accelerated imaging strategies. Conventional methods,
such as parallel imaging [1], [2] and compressed sensing
(CS) [3] are used clinically, but typically their acceleration
rates are limited by noise amplification and residual aliasing
artifacts in reconstructed images. Recently, deep learning
(DL) methods for accelerated MRI [4]–[8] have emerged
as a powerful tool for MRI reconstruction, with improved
performance over conventional methods in many studies.
Among DL methods, physics-guided DL (PG-DL) methods
that unroll conventional optimization algorithms that incor-
porate the encoding operator have received attention [6]–
[9]. While CS uses a linear transform-based representation
of images for regularization, PG-DL methods utilize a non-
linear representation for regularization, which is implicitly
learned through neural networks.

DL reconstruction methods are trained using large
databases, include a large number (usually more than hun-
dreds of thousands or millions [6], [10], [11]) of parameters,
incorporate sophisticated optimization algorithms for training
[12], and utilize state-of-the-art loss functions [13], [14].
On the other hand, when CS reconstruction methods are
implemented for comparison, they typically use two or three
parameters, which are frequently hand-tuned using a simple
grid search. Although some automatic tuning methods have
been proposed [15], [16], these have not leveraged the
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widely-available and popular modern data science tools from
the DL era.

In this work, we use these data science tools to revisit `1-
wavelet CS for accelerated MRI. Similar to PG-DL methods,
we unroll an ADMM algorithm and train it end-to-end, while
using only 4 orthogonal wavelet bases for the regularizing
transforms for a total of 12 tunable parameters. Building
on this naive model, we further incorporate processing of
each individual wavelet subband [17], and reweighted `1
minimization [18], leading to 64 and 128 tunable parameters
respectively. Results show that even the naive model closes
the gap in reconstruction performance to advanced PG-DL
methods, while the incorporation of subband and reweighting
further improves the quality of reconstruction to a level
comparable to PG-DL methods. All the models proposed
here enable a linear representation for interpretable and
convex sparse image reconstruction at inference time.

II. MATERIALS AND METHODS

A. Inverse Problem for Accelerated MRI

The forward model for accelerated MRI is given as

y = Ex+ n (1)

where x ∈ CN is the image to be reconstructed, y ∈ CM

is the undersampled k-space data from all coils, E : CN →
CM is the linear forward encoding operator containing coil
sensitivity maps and partial Fourier matrix for undersampling
in k-space [19], and n is the measurement noise. The inverse
problem involves solving the objective function:

x̂ = argmin
x

1

2
‖y −Ex‖22 +R(x) (2)

where ‖y−Ex‖22 enforces data consistency (DC) and R(x)
is a regularizer.

In conventional CS MRI reconstruction, the form of R(x)
is often a weighted `1-norm of transform coefficients, i.e.
R(x) =

∑L
l=1 λl ‖Wlx‖1, where Wl is a pre-specified lin-

ear (often orthogonal) transform, such as a discrete wavelet
transform (DWT) [3], and L is the number of linear trans-
forms used for regularization. The resulting convex objective
function is solved via an iterative optimization algorithm
[20]. These algorithms are conventionally run until a stop-
ping criterion is met, making hyperparameter tuning difficult.

On the other hand, in PG-DL reconstruction, the inverse
problem is usually solved by unrolling an iterative opti-
mization algorithm for a fixed number of iterations [21],
[22]. Typically, the solutions are decoupled to a series of
regularizer and DC units. The regularizer in PG-DL is
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Fig. 1: Schematic of the unrolled ADMM for `1-wavelet compressed sensing (CS). One unrolled iteration of ADMM with `1-wavelet
regularizers consists of regularizer (R), data consistency (DC) and dual update (DWT: Discrete wavelet transform). In accordance with
the ADMM framework, learnable parameters are shared across different unrolled iterations. In its simplest form, this leads to 3 trainable
parameters per wavelet. Further enhancements, such as separate thresholds for wavelet subbands and reweighted `1 minimization increase
this number to 16 trainable parameters per wavelet.

implemented implicitly via convolutional neural networks
(CNNs), while the DC unit is solved by linear methods, such
as gradient descent or conjugate gradient [7]. The network
is trained end-to-end as:

min
θ

1

N

N∑
n=1

L
(
yn

ref, E
n
full

(
f(yn,En;θ)

))
, (3)

where yn
ref denotes the fully-sampled reference k-space of

the nth subject, f(yn,En;θ) denotes network output of the
unrolled network with parameters θ of the nth subject, En

full
is the fully sampled multi-coil encoding operator of the nth

subject, N is the number of datasets in the training database,
and L(·, ·) is a loss function between the network output and
the reference. Common choices for L(·, ·) include `2 norm,
`1 norm, mixed norms and perception-based loss [8], [14].

B. Proposed Learning of `1-Wavelet CS Reconstruction

We optimize conventional `1-Wavelet CS reconstruction
by using the data science tools utilized in PG-DL techniques.
First, we utilize ADMM to set

x(t+1) =

(
EHE+

L∑
l=1

ρlI

)−1
(
EHy +

L∑
l=1

ρlW
H
l

(
z
(t)
l − β

(t)
l

))
(4a)

z
(t+1)
l = soft

(
Wlx

(t+1) + β
(t)
l ;λl/ρl

)
(4b)

β
(t+1)
l = β

(t)
l + η

(t+1)
l

(
Wlx

(t+1) − z
(t+1)
l

)
(4c)

where zl are auxiliary variables in wavelet domain, βl

are dual variables, soft (·;λl/ρl) is the `1 soft-thresholding
operator parameterized by λl/ρl, and t denotes the iteration
count. The algorithm is unrolled for T iterations, as depicted
in Figure 1.

The learnable parameters in this algorithm are ρl, λl/ρl
and ηl, which correspond to parameters for augmented La-
grangian relaxation, `1 soft-thresholding and the dual update
per each wavelet transform. We note that these are shared

across all the unrolled iterations to ensure that the objective
function in (2) remains unchanged throughout the iterations,
and interpretability of the algorithm can be maintained. Thus,
there are 3 ·L learnable parameters for the whole algorithm
when using L orthogonal DWTs.

This approach serves as the foundation for all our proposed
models, and is subsequently referred to as the learned naive
`1-Wavelet reconstruction. In all our models, the input to the
network is the zerofilled image, x(0) = EHy. Furthermore,
since the regularizer in (2) scales with ||x||∞, while the
DC term in (2) scales with ||x||2∞, λl/ρl is parametrized
as γl

∥∥Wlx
(0)
∥∥
∞, and the scaling-invariant parameter γl is

learned. Overall, the learned parameters are {ρl, γl, ηl}Ll=1.

C. Further Enhancements for Optimized `1-Wavelet CS Re-
construction

The naive optimized `1-Wavelet approach can further be
enhanced using our understanding of wavelet representations
[17] and of `1 minimization problems [18]. In particular, we
use the fact that signal scaling changes severely between dif-
ferent wavelet subbands for the former, and that reweighted
`1 minimization helps recover finer details for the latter.
Learning `1-wavelet reconstruction with subband pro-
cessing: For different subbands of a wavelet transform, the
soft-thresholding parameters may be different. To this end,
let Ds

l be an operator that select the sth subband of the lth

wavelet transform. We propose to use the regularizer

R(x) =
L∑

l=1

S∑
s=1

λl,s ‖Ds
lWlx‖1 , (5)

which also lead to the following modified update in (4b).

Ds
l z

(t+1)
l = soft

(
Ds

l

(
Wlx

(t+1) + β
(t)
l

)
;
λl,s
ρl

)
(6)

for all s ∈ {1, . . . , S}. Thus, the learnable soft-thresholding
parameters are λl,s/ρl for the sth subband of the lth wavelet
transform. During end-to-end training, this parameter is
again implemented in a scaling-invariant manner by defining

3597



Fig. 2: A representative slice from coronal PD knee MRI, reconstructed using PG-DL, learned naive `1-wavelet, learned `1-wavelet
with subbands, and learned reweighted `1-wavelet with subbands. The proposed optimized `1-wavelet reconstructions perform closely to
PG-DL. Learned reweighted `1-wavelet with subbands performs the best among these `1-wavelet CS variants, resulting in sharp images
with similar quantitative metrics to PG-DL.

γl,s = (λl,s/ρl)/
∥∥Ds

lWlx
(0)
∥∥
∞ and learning {γl,s} for

l ∈ {1, . . . , L} and s ∈ {1, . . . , S}. Thus this approach leads
to a total of L · (S + 2) learnable parameters when using S
subbands and L orthogonal DWTs.
Learning reweighted `1-wavelet reconstruction with sub-
band processing: A further improvement in performance,
especially in the lower SNR regimes, may be achieved
using reweighted `1 minimization, which has been shown
to improve recovery of small coefficients [18]. To this end,
let x̂sb denote the output of the learned subband `1-wavelet
reconstruction. We define a diagonal weight matrix Ul whose
(k, k)th entry is given as

(Ul)(k,k) =
1

|(Wlx̂sb)k|+ ε
, (7)

where (·)k denotes the kth coefficient of the vector (·), and ε
is a small constant to avoid numerical issues when dividing
by zero. This weight matrix is used to define the reweighted
`1 regularizer with subband processing as:

R(x) =
L∑

l=1

S∑
s=1

λl,s ‖Ds
lUlWlx‖1 . (8)

This leads to the following modified update in (4b).

Ds
l z

(t+1)
l = soft

(
Ds

l

(
Wlx

(t+1) + β
(t)
l

)
;
λl,s
ρl

Ds
l diag(Ul)

)
.

(9)
for all s ∈ {1, . . . , S}. We note that the regularizer
in (8) does not change if x is scaled by a constant
α, while the DC term in (2) still scales with ||x||2∞.
Thus, we define a scaling-invariant thresholding factor
γrl,s = (λl,s/ρl)/

∥∥Ds
lWlx

(0)
∥∥2
∞ . During end-to-end train-

ing, {γrl,s} is learned for l ∈ {1, . . . , L} and s ∈ {1, . . . , S}
in addition to {ρl, ηl}Ll=1.

This approach still has L · (S + 2) learnable parameters
during the reweighting stage, even though signal-dependent

weights are incorporated via (7). Including the learned sub-
band reconstruction, which is used to determine the weights
in (7) leads to a total of 2L · (S + 2) learnable parameters
for the whole reconstruction pipeline. We also note that once
these parameters are learned, they can be applied for multiple
reweightings, krew, during testing, since the scaling of {γrl,s}
remains on the same order.

D. Imaging Data

Fully-sampled coronal proton density (PD), and PD with
fat-suppression (PD-FS) knee data obtained from the NYU-
fastMRI database [23] were used throughout the experiments.
Relevant imaging parameters were: matrix size = 320×368,
in-plane resolution = 0.49 × 0.44 mm2, slice thickness = 3
mm. The datasets were retrospectively under-sampled with
a random mask (R = 4 with 24 ACS lines). Training was
performed on 300 slices from 10 different subjects. Testing
was performed on all slices from 10 different subjects. Coil
sensitivity maps were generated using ESPIRiT [24].

E. Implementation Details

For all models, L = 4 wavelets were used, corresponding
to Daubechies1-4 orthogonal wavelets with 14 subbands for
each. Thus, the total number of learnable parameters were
12, 64 and 128 for the learned naive `1-wavelet, `1-wavelet
with subbands, and reweighted `1-wavelet with subbands
reconstructions, respectively. For the last method, krew = 2
was used in testing, similar to [18].

ADMM algorithm was unrolled for T = 10 for all models.
ε was set to 10−9 in (7). DC subproblem was solved using
conjugate gradient [7] with 5 iterations and warm-start.
All tunable parameters were randomly initialized. Adam
optimizer with learning rate 5× 10−3 was used for training
over 100 epochs, with a batch size of 1. Supervised training
was performed with a normalized `1−`2 loss in k-space [8],
[10], using TensorFlow in Python.
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Fig. 3: A representative slice from coronal PD–FS knee MRI, reconstructed using PG-DL, learned naive `1-wavelet, learned `1-wavelet
with subbands, and learned reweighted `1-wavelet with subbands. For this lower SNR acquisition, the learned naive `1-wavelet suffers
from visible blurring artifacts. These are improved using subband processing, while the sharpness is only fully recovered using the learned
reweighted `1-wavelet with subbands method, which leads to a visibly similar reconstruction to PG-DL.

For comparison, a PG-DL approach was implemented
using the same ADMM unrolling except for using a ResNet-
based regularizer unit. The ResNet was originally adapted
from the winner of a super-resolution challenge [25], and has
been used in multiple recent MRI studies successfully [9],
[10]. The PG-DL approach has a total of 592,130 learnable
parameters. Note this constitutes a head-to-head comparison,
with the only difference being in the R(x) term, where
our approaches employ `1-norm of wavelets for solving a
convex problem, while PG-DL uses a CNN for implicit
regularization. All results were quantitatively compared using
SSIM and NMSE.

III. RESULTS

Figure 2 shows a representative slice from coronal PD
knee MRI, reconstructed using PG-DL and the three `l-
wavelet CS approaches optimized with modern data science
tools, respectively. For this high SNR acquisition, even the
learned naive `1-wavelet results in a high-quality reconstruc-
tion, while the learned `1-wavelet with subbands leads to
a slightly sharper reconstruction. Learned reweighted `1-
wavelet with subbands performs the best among the three
optimized `l-wavelet CS approaches, resulting in a sharp
reconstruction, showing comparable visual quality and quan-
titative metrics to PG-DL.

Figure 3 depicts a representative coronal PD-FS knee MRI
slice, reconstructed using PG-DL and the three optimized `l-
wavelet CS approaches. The PD-FS dataset has an inherently
lower SNR compared to PD. As such, the learned naive `1-
wavelet results in a blurry image due to the difficulty of
fine-tuning a single thresholding parameter. This is improved
with subband processing, but sharpness is fully recovered
only with the learned reweighted `1-wavelet with subbands
approach, which results in a visibly similar reconstruction to
the PG-DL method.

Table I summarizes quantitative results from knee MRI.
While PG-DL has the best metrics, the gap between proposed
optimized `l-wavelet CS and PG-DL is small, with < 0.01
for SSIM and < 0.0008 for NMSE.

IV. DISCUSSION AND CONCLUSION

In this study, we revisited `l-wavelet CS for acceler-
ated MRI using modern data science tools for fine tuning.
As expected, PG-DL outperformed our three optimized `l-
wavelet CS approaches, but the performance gap was smaller
than previously published literature. This is interesting for
a number of reasons. First, PG-DL used a sophisticated
non-linear representation for the underlying images during
regularization with a large number of learnable parameters.
On the other hand, the wavelet-based representations we

Coronal PD Coronal PD-FS
NMSE SSIM NMSE SSIM

PG-DL .0013 [.0010, .0017] 0.9673 [0.9547, 0.9775] .0074 [.0049, 0.0107] 0.8795 [0.8322, 0.9146]
Learned Naive `1-wavelet .0019 [.0014, .0024] 0.9574 [0.9404, 0.9692] .0090 [.0062, 0.0125] 0.8598 [0.8121, 0.9023]
Learned `1-wavelet with Subbands .0019 [.0014, .0024] 0.9588 [0.9423, 0.9699] .0081 [.0055, .0121] 0.8662 [0.8202, 0.9057]
Learned reweighted `1-wavelet with
Subbands

.0017 [.0013, .0022] 0.9602 [0.9444, 0.9709] .0082 [.0053, .0116] 0.8694 [0.8211, 0.9068]

TABLE I: The median and the interquartile range [25th, 75th percentile] of the NMSE and SSIM metrics on test slices from 10 subjects
for coronal PD and PD-FS datasets. While PG-DL has the best metrics as expected, the gap in SSIM between PG-DL and the learned
reweighted `1-wavelet with subbands is < 0.01.
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used were linear, involved only a small number of param-
eters, and allowed for convex optimization. Interestingly,
there was <0.01 difference in SSIM between our proposed
learned reweighted `1-wavelet with subbands that used 128
parameters and the PG-DL approach that used >500,000
parameters. Second, while PG-DL can be further improved
with more advanced neural networks and training strategies
[26], our CS approach used one of the simplest linear models
described by fixed orthogonal wavelets, and did not involve
learning of the representation. Our results also showed that
the performance gap decreased as we proceeded from learned
naive `1-wavelet to learned reweighted `1-wavelet with sub-
bands, demonstrating subband training and reweighting help
improve reconstruction sharpness and quantitative metrics to
a level comparable to PG-DL. Further gains for CS may be
possible via learning linear representations/frames [27], [28],
which warrants investigation.
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[17] M. Vetterli and J. Kovačevic, Wavelets and Subband Coding, Prentice-
Hall, Inc., USA, 1995.

[18] E. Candès, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted
l1 minimization,” Journal of Fourier Analysis and Applications, vol.
14, pp. 877–905, 11 2007.

[19] K. P. Pruessmann, M. Weiger, P. Bornert, and P. Boesiger, “Advances
in sensitivity encoding with arbitrary k-space trajectories,” Magn
Reson Med, vol. 46, pp. 638–651, 2001.

[20] J. A. Fessler, “Optimization methods for magnetic resonance image
reconstruction: Key models and optimization algorithms,” IEEE Sig
Proc Mag, vol. 37, no. 1, pp. 33–40, 2020.

[21] K. Gregor and Y. LeCun, “Learning fast approximations of sparse
coding,” in Proc. Int. Conf. Mach. Learn, 2010, pp. 399–406.

[22] V. Monga, Y. Li, and Y. C. Eldar, “Algorithm unrolling: Interpretable,
efficient deep learning for signal and image processing,” IEEE Sig
Proc Mag, vol. 38, no. 2, pp. 18–44, 2021.

[23] F. Knoll, J. Zbontar, et al., “fastMRI: A publicly available raw k-
space and DICOM dataset of knee images for accelerated MR image
reconstruction using machine learning,” Radiol AI, p. e190007, 2020.

[24] M. Uecker, P. Lai, et al., “ESPIRiT–an eigenvalue approach to
autocalibrating parallel MRI: where SENSE meets GRAPPA,” Magn
Reson Med, vol. 71, no. 3, pp. 990–1001, Mar 2014.

[25] R. Timofte, E. Agustsson, L. Van Gool, M. H. Yang, and L. Zhang,
“Ntire 2017 challenge on single image super-resolution: Methods and
results,” in Proc IEEE CVPR, 2017.

[26] M. J. Muckley, B. Riemenschneider, et al., “State-of-the-art machine
learning MRI reconstruction in 2020: Results of the second fastMRI
challenge,” 2020.

[27] B. Wen, S. Ravishankar, L. Pfister, and Y. Bresler, “Transform learning
for magnetic resonance image reconstruction,” IEEE Sig Proc Mag,
vol. 37, no. 1, pp. 41–53, 2020.

[28] M. Akcakaya and V. Tarokh, “A frame construction and a universal
distortion bound for sparse representations,” IEEE Trans Sig Proc,
vol. 56, no. 6, pp. 2443–2450, 2008.

3600


