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Abstract— Wearable devices are currently being considered
to collect personalized physiological information, which is lately
being used to provide healthcare services to individuals. One
application is detecting depression by utilization of motor
activity signals collected by the ActiGraph wearable wristbands.
However, to develop an accurate classification model, we require
to use a sufficient volume of data from several subjects, taking
the sensitivity of such data into account. Therefore, in this pa-
per, we present an approach to extract classification models for
predicting depression based on a new augmentation technique
for motor activity data in a privacy-preserving fashion. We
evaluate our approach against the state-of-the-art techniques
and demonstrate its performance based on the mental health
datasets associated with the Norwegian INTROducing Mental
health through Adaptive Technology (INTROMAT) Project.

I. INTRODUCTION

Mental health disorders are the primary contributor to
chronic diseases in Europe [1]. Twenty-five percent of people
develop at least one mental or behavioral disorder in their
life [2]. Depression is the most prevalent among mental
health disorders and is expected to increase in the following
years [3], [4], [5]. Therefore, addressing and controlling
depression is necessary for society as it affects individuals’
physical, emotional, and economic aspects [6].

Wearable devices provide the opportunity to monitor pa-
tients on a long-term basis to detect and prevent health disor-
ders in earlier stages [7], [8], [9], [10]. Wearable technologies
offer pervasive healthcare solutions at an affordable price
by removing time and location restrictions [11]. The data
collected by such devices has attracted a lot of attention
for mental health applications [12]. One such application
is detecting depression in patients based on motor activity
data collected from ActiGraph wristband [13]. The motor
activity is captured by the accelerometry signals acquired by
the ActiGraph wristband. Figure 1 explains a scenario for the
analysis of sensor data generated by wearable devices. In this
figure, the activity signal of each individual is collected by a
wristband, and is transferred to the personal mobile phone.
Then, the raw data may be preprocessed and prepared for the
analysis task locally on the phone or analyzed in a distributed
fashion [14], [15].

Monitoring mental health and, in particular, depression by
using signals collected by wearable devices involve several
challenges. Firstly, sharing healthcare data for analysis pur-
poses is not always feasible due to privacy and legal concerns
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[16], [17], [18], [19]. In particular, privacy and security are
among the most concerning challenges in real-time health
monitoring using mobile health technologies [20], [21], [22].
Privacy-preserving data sharing, e.g., [23], [24], [25], and
privacy-preserving data mining [26], [27], [28], [29], [30],
[15] approaches offer a solution to data analysis without the
raw data leaving the individuals’ devices. Secondly, although
there is a connection between mental health problems and
disturbance in internal biological systems, relations between
mood and physiological signals are not well-identified [31],
[13]. Therefore, finding the correlation between physiologi-
cal signals and mental health problems is challenging.

This paper addresses analyzing motor activity data col-
lected by the ActiGraph wristband. We use the Depresjon
(depression in Norwegian) dataset 1 [13] which contains mo-
tor activity signals of patients from control (non-depressed)
and condition (depressed) groups. Our goal is to predict de-
pression in patients based on such data. Previous studies [13]
have considered a feature-based approach for the detection of
depression. However, as we show in this paper, the prediction
performance may be improved by further exploiting the
information carried in the signals (beyond the basic statistical
attributes, e.g., the mean and standard deviation).

In this paper, we propose an augmentation approach for
generating new records from the Depresjon dataset [13] to
improve the classification performance. In other words, our
approach produces new data records from the raw data in
order to use them for the learning and evaluation process.
We show that adopting our augmentation approach leads
to learning classification models with higher performance,
i.e., up to 7.9% higher F1-score, 8.2% higher Accuracy, and
0.169 higher Matthews Correlation Coefficient. However, the
motor activity raw data that is required for the analysis is
generated on each patient’s wearable device and inherently
distributed. Such data cannot be transferred to a center for
further analysis due to personal and/or legal privacy concerns
(e.g., to infer mental health status from the data). To address
this privacy issue, we investigate the possibility of using
our recently proposed privacy-preserving distributed machine
learning approach, PPD-ERT [33], for sensor data based on
the Depresjon dataset, which paves the way for the real-world
applications of our approach for wearable technology in the
described settings.

The remainder of this article is structured as follows:
The approach and details about generating records from the

1The Depresjon dataset is publicly available at [32], and is collected
within the INTROMAT project.
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Fig. 1: Analysis of sensor data generated by wearable devices

Depresjon dataset are described in Section II. The evaluation
of the approach and experimental results are presented in
Section III. Finally, Section IV concludes the paper.

II. APPROACH

This section presents our approach to detecting depression
based on the motor activity data. We, first, describe our
approach for generating data records from the Depresjon
dataset. Then, we discuss how PPD-ERT [33] is utilized
for privacy-preserving distributed learning of classification
models from generated data records and in the context of
real-world wearable devices.

Let us first give an overview of the Depresjon dataset.
The dataset consists of motor activity data of 55 patients
(30 and 25 for females and males) collected by ActiGraph
wristband worn at the right wrist of patients. In this dataset,
23 of the patients are diagnosed with depression, including
both unipolar and bipolar patients, and the remaining 32
belong to the control group. Each patient wore the ActiGraph
wristband for an arbitrary number of days, between 5 to 20
days. The total number of days for the condition group is
291 days, and for the control group is 402.

The recorded values (samples) for each patient in each
minute are proportionate to the quantity, duration, and the
strength of the patient’s movements. Each patient has at least
a sample value greater than or equal to zero for every minute
of a day. It should also be noted that, on the first day for
each patient, the recording started in the middle of the day.
We refer to the data for each day of each patient as a record.
Each record consists of several sample values (or samples in
short).

The authors in [13] proposed the application of the mean
and the standard deviation of the activity level along with
the proportion of minutes with no activity in a day as
the data attributes for depression classification. In addition,
a normalization between zero and one is performed for
attribute values. Therefore, this approach leads to only 693
records (291 for the condition group and 402 for the control
group), one for each day in the raw data.

Although adopting the proposed approach in [13] ex-
tracts a representation of the raw data that results in a fair
classification performance, it may still lead to suboptimal
results. In this dataset, the total number of recorded data
for patients is limited, i.e., only 693 days. Therefore, if we
generate one record for each day, the volume of the data
that the algorithm is trained on will be small, which in
turn limits the detection performance. Moreover, the motor
activity signal on certain days are shorter, where we do not
have a recorded sample for every minute of the day. In this
way, the mean, standard deviation, and the proportion of zero
activity for that data are affected and will be very different
from the days with complete recording. On the other hand,
the number of recorded days for each patient is different.
We have less than one week of recorded activity for some
of the patients, while we have almost three weeks for some
others. Therefore, the approach presented in [13] makes the
data more imbalanced, which may eventually lead to poor
classification performance.

This paper adopts a data augmentation approach for gen-
erating data records from the original Depresjon dataset.
Data augmentation is a functional approach for increasing
the diversity and volume of data by augmenting records
at random [34], [35]. The majority of machine learning
algorithms, e.g., deep neural networks, learn higher perfor-
mance classification models when they are trained on larger
datasets. Moreover, data augmentation can lead to better
generalization and robustness by learning models invariant
to the transformation of the data, e.g., learning an object
classifier model that can classify objects correctly even if
the images are rotated.

By adopting a data augmentation approach, we generate an
equal number of records for each patient. All the generated
records will have a unique size equal to the number of
minutes in a day. For each patient, we generate n records,
where n can be adjusted based on the user needs. The length
of each record, l, is equal to the number of minutes in a day,
i.e., l = 1440 (60×24), representing the patient activity level
in one day.

Let us denote the set of all samples for patient i by Si and
define it as: Si = {sijk ∈ Rij ,∀j, k}. Rij captures the j-th
record of patient i and sijk is the sample k in record Rij .
For every minute t during the day, we check the available
samples for this patient and for this specific time in the day,
e.g., t = 12:00. The recorded samples for different days
of this patient around this particular time, i.e., t± δ, are the
candidates for being selected as the new (augmented) sample
for this timestamp, where 2 ·δ is the duration of this interval.
The parameter δ determines the time interval within which
we acquire the augmented sample.
R̂ij captures the j-th augmented record of patient i and is

defined as: R̂ij = [ŝij1, ..., ŝijl]. ŝijk denotes the k-th sample
for the generated record R̂ij , where 1 ≤ k ≤ l. ŝijk is the
sample at time t and is selected at random from set Si and
in the time interval [t − δ, t + δ]. This is formally defined
as ŝijk ∈ {s ∈ Si|t − δ ≤ t(s) ≤ t + δ}, where t(s) is the
time of sample s. This process is repeated until we have n
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(a) Subject 20 from condition group (b) Subject 20 from control group

Fig. 2: The figure presents two examples of generated records based on the raw data for individuals in condition and control groups.
Each signal/record showed by gray dots represents one recorded day of the patients. The last signal shown by blue dots represents the
generated record by our proposed approach (l = 1440 and δ = 10). The examples show the correspondence of raw data and generated
records and that the subject in the condition group usually has less activity, after the sleeping time, compared to the one from the control
group.

records for each patient.2

The augmented record reflects the patients’ activity level
in a day and is proportionate to the original data since its
samples for all timestamps (t) are randomly chosen from
samples for the close timestamps (t ± δ) in the reported
days. Therefore, the approach preserves the changes in the
activity level of the patients in the data. This is particularly
important, as studies found evidence that suggests a relation-
ship between decreased daytime motor activity and increased
nighttime activity and a depressive state, compared to healthy
individuals [36], [13]. In similar studies, the decreased motor
activity and more diversity in the activity level are reported
for patients suffering from bipolar depression [37]. That
being said, this means that preservation of activity level
changes during the day for a patient is one of the main

2The source code of our approach is available at
https://github.com/AminAminifar/dataprep

advantages of our augmentation approach.
Figure 2 shows the generation of records from two pa-

tients’ raw data. The horizontal axis represents the time in
a day, and the vertical axis shows the activity level. All
patient’s activity levels at different timestamps are shown
in the figure by gray bubbles, and the blue bubbles are
the samples for the generated record by our augmentation
technique. Figures 2a and 2b show the raw signals/records
(twelve days) and the augmented record for Subject 20
from the condition group and Subject 20 from the control
group, respectively. The figure shows the association of the
generated record and the raw data. In the intervals that the
patient usually has a low level of activity, e.g., from midnight
to the morning, the generated record also shows a low level
of activity and vice versa.

The augmented dataset can then be used by the machine
learning algorithms for the detection of depression. The raw
data generated from each patient’s activity are stored on
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TABLE I: Classification performance (leave one patient out) of different classification algorithms for the approach in [13]
and the generated data records based on our approach

Algorithms Our approach Approach in [13]
F1-score ACC MCC F1-score ACC MCC

Distributed PPD-ERT 76.3% 76.8% 0.518 66.3% 67.0% 0.310
Distributed ID3 65.1% 65.0% 0.286 65.6% 66.5% 0.296

Centralized

ERT 76.3% 76.8% 0.518 66.3% 67.0% 0.310
Random forest 74.4% 75.1% 0.481 64.3% 64.7% 0.266
XGBoost 76.2% 76.3% 0.510 64.3% 64.7% 0.265
Decision Tree 65.7% 65.8% 0.293 60.6% 60.7% 0.191
Linear SVM 69.5% 69.5% 0.375 68.4% 68.6% 0.349

patients’ personal devices. Due to privacy and legal issues,
such data cannot be transferred to a center for analysis in
such healthcare applications. A practical solution in such
situations is performing analysis through privacy-preserving
distributed data analysis methods. Therefore, here we adopt
our proposed PPD-ERT algorithms [33], [38] for analyzing
the Depresjon dataset and learning the classification model.
The ensemble learning procedure adopted by PPD-ERT
reduces the risks of overfitting.

The described approach for generating data instances
(augmenting data) is compatible with our privacy-preserving
distributed methods. This is because the new records are
generated merely based on one patient’s raw data and are
independent of other patients’ data. Therefore, each patient
generates the instances on its own device locally. Then, the
generated records are the data that is used for training the
PPD-ERT algorithm. By employing the PPD-ERT approach,
we learn high-performance classification models without
sharing raw data or sensitive information. The learned mod-
els will then be used for detecting depression by each
individual.

III. EVALUATION AND DISCUSSION

In this section, we evaluate our proposed augmentation
technique for motor activity data. We consider several classi-
fication algorithms to assess and compare the results obtained
from our proposed approach and the approach in [13].
Moreover, we use our recently proposed method, PPD-ERT
[33], for the described problem, i.e., detection of depression
in patients based on motor activity data, to investigate the
possibility of applying this method for such data from
wearable devices.

The objective here is to learn classification models to de-
tect depression based on the motor activity signals collected
by the ActiGraph wristband. The trained model will later
be used to detect depression in individuals based on their
activity levels. The target categories for classification are
two, i.e., normal/control category and depressed/condition
category.

As described in Section II, [13] proposes using a dataset
(obtained from original data) which contains three attributes
(i.e., mean, standard deviation, and zero activity ratio) and
one label for each record, and each record represents one
day of collected data for one patient. This is while our
approach generates records that contain a sample for each

minute during the day, i.e., 1440 attributes for each record
(l = 1440). In our experiments, we generate 100 records for
each patient (n = 100). Every record is generated based on
the samples collected at different days of a patient’s collected
signals. Each timestamp’s sample for the record is selected
among the available samples in 10 minutes time span around
it (δ = 10). Therefore, in both approaches, each generated
record belongs to one and only one patient. This provides the
possibility for leave-one-patient-out evaluation, which in turn
enables the adoption of our privacy-preserving distributed
learning framework.

In our experiments, we measure the classification perfor-
mance of several learning algorithms on data generated based
on the two approaches, with leave-one-patient-out evaluation.
We perform the leave-one-out evaluation for each patient,
where the target patient’s data is considered as the test set and
the remaining data from other patients is considered as the
training set. We use F1-score (weighted average), Accuracy
(ACC), and Matthews Correlation Coefficient (MCC) to
measure the quality of classification, which are the metrics
used for performance evaluation on this dataset [13].

We perform the learning process on both the data with
attributes proposed in [13] and generated data records by
our approach, based on five centralized and two privacy-
preserving distributed machine learning algorithms. Table I
exhibits these results.

The results show a substantial improvement in the clas-
sification performance by employing our approach for gen-
erating data records from raw data. Particularly, tree-based
ensemble learning approaches, i.e., PPD-ERT, ERT [39],
random forest [40], and XGBoost [41], present more accurate
results when trained on data generated by our augmentation
approach. This is while training on the data with attributes
proposed in [13] yields the best results when employing the
linear SVM algorithm [42]. Comparing the best results for
both approaches shows that applying our approach leads to
learning more accurate classification models, i.e., models
with 7.9% higher F1-score, 8.2% higher ACC, and 0.169
higher MCC. The PPD-ERT and ERT algorithms follow the
same learning procedure and have the same classification
performance [33].

Figures 3a and 3b show the heat-map for the raw and
generated data, respectively. Each box represents the average
activity level of one patient in one-hour intervals in a day. For
the raw data, Figure 3a represents the average activity level
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(a) Heat-map for the raw data

(b) Heat-map for the augmented data

Fig. 3: Heat-map for averaged activity level in one-hour intervals for each patient
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of each patient based on all recorded days for him/her. Figure
3b shows the heat-map for the average activity of patients
based on the generated data by adopting our approach.

The heat-maps of activity level based on the raw dataset
and the generated dataset in Figures 3a and 3b are visually
similar. This similarity explains the association of the gener-
ated records and the original dataset. In order to measure the
similarity between the generated data by our approach and
the raw data, we calculate the relative difference among the
corresponding values for each cell, averaged over the entire
heat-map. The average relative difference is calculated as
follow:

D[R,A] =
1

n ·m

n∑
i=1

m∑
j=1

|rij − aij |
rij

, (1)

where n is the number of patients in each group, and
m is the number of one-hour intervals in a day. R =
{r11, r12, . . . , rnm} is the set of average activity level of
one patient in one-hour intervals in a day calculated from
raw dataset. The rij is the average activity level of patient
i in one-hour interval j in the raw data. Moreover, A =
{a11, a12, . . . , anm} is the set of average activity level from
augmented dataset. The average activity level of patient i in
one-hour interval j in the augmented data is captured by aij .
The value of D for the condition group is 3.3%. The value
of D for the control group is equal to 3.5%.

In summary, the evaluation results in this section indicate
the preservation of the activity-level information in the
augmented data for the detection of depression from motor
activity data. Our experimental results show that modern
techniques, e.g., tree-based ensemble learning algorithms,
learn more accurate classifier models given such extensive
information compared to learning from the few basic statis-
tical attributes in previous studies.

IV. CONCLUSION

In this paper, we propose an approach based on data
augmentation to analyze the Depresjon dataset and im-
prove the performance of detecting depression in subjects.
We introduced an approach for augmenting data records
from the Depresjon dataset, which leads to higher detection
performance when employing modern learning algorithms.
Employing our approach leads to learning more accurate
models with up to 7.9% higher F1-score, 8.2% higher
ACC, and 0.169 higher MCC. Moreover, the possibility of
employing privacy-preserving data analysis for such data is
investigated. We demonstrate the possibility of using our
privacy-preserving distributed data analysis technique, PPD-
ERT, for wearable devices/sensors to ensure the preservation
of the privacy of sensitive information for the patients in the
context of depression and mental health disorders.
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