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Abstract— Respiratory rate (RR) is a clinical sign represent-
ing ventilation. An abnormal change in RR is often the first sign
of health deterioration as the body attempts to maintain oxygen
delivery to its tissues. There has been a growing interest in
remotely monitoring of RR in everyday settings which has made
photoplethysmography (PPG) monitoring wearable devices an
attractive choice. PPG signals are useful sources for RR extrac-
tion due to the presence of respiration-induced modulations in
them. The existing PPG-based RR estimation methods mainly
rely on hand-crafted rules and manual parameters tuning.
An end-to-end deep learning approach was recently proposed,
however, despite its automatic nature, the performance of this
method is not ideal using the real world data. In this paper, we
present an end-to-end and accurate pipeline for RR estimation
using Cycle Generative Adversarial Networks (CycleGAN) to
reconstruct respiratory signals from raw PPG signals. Our
results demonstrate a higher RR estimation accuracy of up
to 2× (mean absolute error of 1.9±0.3 using five fold cross
validation) compared to the state-of-th-art using a identical
publicly available dataset. Our results suggest that CycleGAN
can be a valuable method for RR estimation from raw PPG
signals.

I. INTRODUCTION

Respiratory rate (RR), often referred to as breathing rate,
is the number of breaths a person takes per minute. A normal
resting RR for adults ranges from 12 to 20 [1]. Abnormal
changes in respiratory rate are an accurate indicator of phys-
iological conditions such as anxiety, hypoxia, hypercapnia,
metabolic and respiratory acidosis [2]. A diverse body of
research studies has indicated the significance of respiration
rate for forecasting events such as cardiac arrest, patient
deterioration, and care escalation [3], [4], [5].

The importance of respiratory rate as one of the first
indicators of health deterioration has attracted significant
attention in RR’s daily monitoring [6]. However, RR’s re-
liable measurement devices are bulky and cumbersome, and
are mainly used for inpatients. With the rapid develop-
ment of wearable technologies, a change in an individual’s
physiological systems’ functional state can be tracked and
monitored in an everyday setting, for instance, by using
photoplethysmography (PPG) [7]. PPG signals can easily be
collected continuously and remotely using a wide range of
inexpensive, convenient, and portable wearable devices (.e.g.,
smart watches, rings, etc.). The blood perfusion dynamics

1 Department of Electrical Engineering and Computer Science, Uni-
versity of California Irvine, CA 92697, USA (*correspondence
e-mail: saqajari@uci.edu)

2 Department of Computer Science, University of California, Irvine, CA
92697, USA

3 Institute for Future Health, University of California, Irvine, CA 92697,
USA

are known to carry information on breathing, as respiration-
induced modulations in PPG signals [8]. Hence, PPG signals
are considered as a suitable source for respiratory rate
extraction to forecast unexpected care admissions in a daily
life setting .

The RR estimation from PPG signals has received remark-
able attention in the literature [9]. Traditional RR estimation
methods require several steps, including digital filtering,
time/frequency domain analysis, extraction of signal compo-
nents from composite signals, deriving respiratory surrogate
waveforms and features using the fiducial points, signal qual-
ity estimations, and sensor fusion [10]. These techniques rely
heavily on manual parameter tuning, optimization, and hand-
crafted rules designed for specific target patient population.
In contrast, Bian et al. [11] recently proposed an end-to-
end deep learning approach in order to automatically and
accurately estimate RR from raw PPG signals. Despite the
automatic nature of their proposed model, the performance
of this method is not ideal (mean absolute error (MAE) of
3.8 ± 0.5 bpm, which is about %25 inaccuracy considering
16 bpm as an average RR per minute).

This work proposes an automatic end-to-end generative
deep learning approach using cycle generative adversarial
networks (CGAN) [12] to reconstruct respiratory signals
from raw PPG signals and estimate RR with a high accuracy.
CGAN is a novel and powerful approach in the field of unsu-
pervised learning, which targets learning the structure of two
given data domains to translate an individual input from one
domain to a desired output from the second domain. We also
propose a novel loss function to be integrated in our CGAN
model that takes into account the key attribute (i.e., RR)
of the generated respiratory signals. Our results demonstrate
that the proposed GAN-based approach estimates RR from
raw PPG signals with 2× higher accuracy compared with the
state-of-the-art approach [11] using real-world data. Further-
more, our method outperforms the classical RR estimations
methods, despite utilizing the complete automatic end-to-end
design.

In summary, this work makes the following key contribu-
tions:

• Proposing an end-to-end automatic approach based on
CGAN which outperforms the performance of the clas-
sical RR estimation methods (using an identical setting
and dataset).

• Proposing a novel loss function for our CGAN model
that takes into account the RR of the generated respira-
tory signals.

• Demonstrating the performance of our approach using
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the real-world data and comparing it against the state-
of-the-art (using an identical setting and dataset).

The rest of this paper is organized as follows. Section II
introduces the employed dataset and our proposed pipeline
architecture. In Section III we summarize the result obtained
by our proposed method. Section IV compares our result with
the state-of-the-art in RR estimation from raw PPG signal.
Finally, Section V concludes the paper.

II. MATERIAL AND METHODS

A. Dataset

We employed BIDMC PPG and Respiration Dataset [13]
to evaluate our RR estimator method. This is a publicly
available dataset which contains signals and numerics ex-
tracted from the much larger MIMIC II matched waveform
Database, along with manual breath annotations made from
two annotators, using the impedance respiratory signal.

In this dataset, PPG and impedence respiratory signals
are collected from 53 adult patients for about 8-minute
duration at sampling rate of 125 Hz. This dataset is widely
used to evaluate the performance of different algorithms for
estimating respiratory rate from PPG signals [9], [14], [15],
[11].

B. RR Estimation Pipeline

Figure 1 shows our proposed pipeline for estimating
respiratory rate from PPG signals. There are three different
main stages in this pipeline: (1) Data Preparation, (2) PPG
to Respiration Translator (PRT), and (3) RR Estimator. In
the following subsections, we discuss each part in detail.

1) Data Preparation: The primary purpose of this stage
is to prepare the data and pre-process it for the PPG-to-
Respiration Translator (PRT) module. PPG signals are sam-
pled at much higher frequency than required in the BIDMC
dataset. Therefore, downsampling is done to save memory,
and reduce processing time and computational complexity of
our model while preserving the signals integrity. In this stage,
first, raw PPG data are normalized to 0-1. Then, the signals
are down-sampled to 30 Hz. Finally, 30-second windows of
data are extracted from the signals to be used in the PRT
module for translation.

Raw PPG Data Preparation PPG To Respiration
Translator (PRT)

RR Estimator Estimated
RR

Fig. 1: RR Estimation Pipeline

2) PPG to Respiration Translator (PRT): In this mod-
ule, the Cycle Generative Adversarial Networks (The Cycle
GAN) are employed to reconstruct respiratory signals from
raw PPG signals. The Generative Adversarial Networks
belong to the field of unsupervised learning targeting to learn

the structure of a given data in order to generate new unseen
data. The GANs are composed of two models: a generator
network and a discriminator network. The generator network
starts at a point from a latent space as an input and aims to
generate new data similar to the expected domain. The dis-
criminator network on the other hand attempts to recognize
if an input data is real (belongs to the original dataset) or
fake (generated by the generator network).

The Cycle GAN is an extension of the Generative Adver-
sarial Networks which was first proposed by Jun-Yan Zhu et
al. [12]. The idea behind the Cycle GAN is to take an input
from the first domain and generate an output of the second
domain. In our case, the goal of Cycle GAN is to learn the
mapping between PPG signals (domain X) and respiratory
signals (domain Y). Each domain contains set of training
samples {xi}Ni=1 ∈ X and {yi}Ni=1 ∈ Y used directly from
BIDMC dataset. The model includes two generators with
mapping functions as G : X → Y and F : Y → X and two
discriminators DX and DY . In the discriminator networks,
DX aims to distinguish between real PPG signals (xi) and
synthetic PPG signals (F (y)) while DY aims to discriminate
between real respiratory signals (yi) and synthetic respiratory
signals (G(x)).

We indicate the distributions of our data as x ∼ pdata(x)
and y ∼ pdata(y). Our objective loss function contains
three terms: (1) adversarial losses [16], (2) cycle consistency
losses, and (3) RR Loss.

Adversarial losses are employed for matching the distribu-
tion of generated synthetic signals to the data distribution of
original signals. We apply adversarial loss function on both
of our mapping functions. The objective function applied to
the mapping function G is expressed as below:

LGAN (G,DY , X, Y ) = Ey∼pdata(y)[logDY (y)]

+Ex∼pdata(x)[log(1−DY (G(x)))]
(1)

where G tries to generate respiratory signals (G(x)) that
look similar to original respiratory signals collected from
BIDMC dataset (domain Y), while DY aims to discriminate
between synthetic respiratory signals (G(x)) and real sam-
ples (y). In a same way, adversarial loss for the mapping
function F is expressed as LGAN (F,DX , Y,X).

A mapping function trained only by adversarial loss as
an objective function can map the same set of signals from
the first domain to any random permutation of signals in
the second domain. Therefore, cycle consistency losses are
added to guarantee the mapping from an individual input
(xi) to a desired output (yi) by considering learned mapping
functions to be cycle consistent. This means that for each
PPG signal x from domain X we must have x → G(x) →
F (G(x)) ≈ x while for each respiratory signal y we have
y → F (y)→ G(F (y)) ≈ y. This behaviour is indicated as:

Lcyc(G,F ) = Ex∼pdata(x)[||F (G(x))− x||1]
+Ey∼pdata(y)[||G(F (y))− y||1]

(2)
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In order to force the synthesized respiratory signals to
only keep their main features, we define RR loss function
which attempts to take into account the RR of the generated
respiratory signals. The BioSPPy [17] public python library
is used to calculate the respiration rate of the synthetic and
original respiratory signals. This additional loss function can
be expressed as:

LRR(G) = Ey∼pdata(y)[||G(F (y))RR − yRR||1] (3)

Therefore, the final objective is the weighted sum of the
above loss functions:

L(G,F,DX , DY ) = LGAN (G,DY , X, Y )

+LGAN (F,DX , Y,X)

+λ1Lcyc(G,F )

+λ2LRR(G)

(4)

where λ1 and λ2 are the weights of cycle consistency loss
and RR loss respectively (both are empirically selected as
10 in our work).
G and F attempt to minimize this objective against

adversaries DX and DY that try to maximize it. Hence, we
aim to solve:

G∗, F ∗ = argmin
G,F

max
DX ,DY

L(G,F,DX , DY ) (5)

We use the CGAN architecture proposed by [12]. The
architecture of generative networks is adopted from Johnson
et al. [18]. This network contains two stride-2 convolutions,
several residual blocks [19], and two fractionally-strided
convolutions with stride 0.5. For the discriminator networks
we use 70×70 PathGANs [20], [21], [22] which aims to
classify whether the signals are fake or real.

3) RR Estimator: This module uses the BreathMetrics
[23] for pre-processing, filtering, and calculating the respi-
ratory rate of the signals. The BreathMetrics is a Matlab
toolbox for analyzing respiratory recordings. Breathmetrics
was designed to make analyzing respiratory recordings easier
by automatically de-noising the data and extracting the many
features embedded within respiratory recordings including
respiratory rate. The methods used in this tool (de-noising
and features extraction) have been validated, peer-reviewed,
and published in Chemical Senses, a scientific journal.

C. Performance Metric

We calculate the mean absolute error (MAE) as the
performance metric in our study in order to evaluate our
RR estimation method. MAE is calculated by averaging the
absolute differences between the values estimated by a model
and the values observed.

MAE is defined as:

MAE =
1

N

N∑
i=1

|RRi
e −RRi

r| (6)

Fig. 2: Example of the synthetic respiratory signal gener-
ated by our PRT module, from top to bottom: reference
respiratory signal, synthetic respiratory signal, and processed
synthetic respiratory signal using the BreathMetrics module.

Where N is total number of respiratory segments. RRi
e

and RRi
r are estimated and reference respiratory rate for

each 1 minute data respectively.
To evaluate the performance of our algorithm, we use 5-

fold cross validation. We split the BIDMC dataset into five
folds while making sure each subject’s data is appeared in
one fold only. We perform the training 5 times and each time
4 folds are for training and 1 fold is for testing. The average
MAE of 5 runs is presented as the final performance results
for our proposed model. We trained our models on Nvidia
Quadro RTX 5000 GPU with 125 GB of RAM. For each
training experiment we performed 100 epochs in which early
stopping technique were employed to reduce over-fitting.

III. RESULTS

Figure 2 shows an example of a reconstructed respiration
signal using our method alongside with its reference respi-
ration signal for the same timing window of the same test
subject. The blue signal represents the reference respiration
signal from the BIDMC dataset. The red signal is the
synthetic respiratory signal which is an output of our PRT
module. The green signal shows the final respiratory signal
after de-noising and pre-processing of the signal using the
BreathMetrics tool. By comparing the reference respiratory
signal and the processed synthetic respiratory signal it can
be seen that our pipeline is capable of reconstructing the
respiratory signal itself from the PPG signal with high
precision.

Table I shows the summary of the MAE performance
(average±std) of our method compared with the state of
the arts. The same publicly available dataset (BIDMC) and
the same performance metric (MAE using five fold cross
validation) are used to fairly evaluate and compare the
performance of our automatic approach.

As can be seen from the table, our CGAN-based method
significantly (up to 2×) outperforms the state-of-the-art RR
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TABLE I: The summary of MAE Performances in compare
with state of the arts

RR Estimation Models MAE
Bian et al. [11] DL method 3.8±0.5

Bian et al. [11] SmartQualityFusion method 2.6±0.4
Our proposed CycleGAN-based method 1.9±0.3

estimation methods from a raw PPG signals. In the next
section, we discuss the results in more details.

IV. DISCUSSION

Existing PPG-based RR estimation methods heavily rely
on features derived from various hand-crafted algorithms and
tuning parameters for specific settings. In this work, we
presented a novel fully end-to-end automatic approach for
estimating RR from raw PPG signals.

A classical RR estimation method has been implemented
in [11] which is referred as SmartQualityFusion, as a com-
bination of Smart fusion [24] and Quality fusion [25]. The
SmartQualityFusion algorithm achieved the MAE of 2.6±0.4
breaths/min (Table I). According to Table I, our proposed RR
estimation pipeline demonstrate a significant improvement in
accurately estimating RR compared with their algorithm (the
MAE of 1.9 breaths/min), despite the complete end-to-end
automatic environment of our method.

Bian et al. [11], also proposed an end-to-end learning
approach based on deep learning to estimate RR from PPG.
Their results demonstrate a clinically reasonable perfor-
mance; however, the performance of their proposed auto-
matic approach heavily depends to the availability of real
world data. They used the mean absolute error (MAE) as
a performance metric in their work. According to their
results, their deep learning approach trained with real data
could achieve the MAE of 3.8±0.5 breath/minutes which
is substantially higher than the MAE error achieved by
their classical algorithm (SmartQualityFusion). According to
Table I, our proposed pipeline architecture provides about
2 times better performance of estimating respiratory rate
compared with their proposed deep learning approach.

One existing limitation of our work, which is also present
in the other state-of-the-art methods, is the lack of noisy
PPG data in the real datasets used for training our models.
Therefore, the performance of our proposed method might
not be as expected on a noisy PPG data collected during daily
life and physical activities. This limitation is also present
in the other state-of-the-arts methods since the employed
datasets are mostly consist of stationary data. However, as
also mentioned in [11], this problem can easily be diminished
by retraining the model using the new existing noisy PPG
and respiratory signals.

In [11], the authors increased the performance of their
proposed method, by augmenting the real datasets using the
generated synthetic PPG data. This enhanced the MAE of
their model from 3.8 brpm to 2.5 brpm. Thus, the data aug-
mentation approach significantly enhanced the performance
of their model. However, our proposed model still achieves a
better performance (1.9 brpm), despite being trained only on

a real data. As a future work, we intend to further increase
the performance of our proposed method by augmenting our
dataset using synthetic data.

V. CONCLUSION

In summary, in this work we presented a novel pipeline
architecture in order to estimate respiratory rate using PPG
signals. We are the first one to use cycle adversarial networks
in our model to reconstruct the respiratory signals from
PPG signals. According to our results, our proposed pipeline
architecture is able to estimate RR with the MAE of 1.9
which has the performance of 2.0x better than the state-of-
the-art automatic RR estimation method.
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[6] A. Nicolò et al., “The importance of respiratory rate monitoring: From

healthcare to sport and exercise,” Sensors, 2020.
[7] J. Allen, “Photoplethysmography and its application in clinical phys-

iological measurement,” Physiological measurement, 2007.
[8] M. Pirhonen et al., “Acquiring respiration rate from photoplethysmo-

graphic signal by recursive bayesian tracking of intrinsic modes in
time-frequency spectra,” Sensors, 2018.

[9] P. H. Charlton et al., “Breathing rate estimation from the electrocar-
diogram and photoplethysmogram: A review,” IEEE RBME, 2017.

[10] ——, “An assessment of algorithms to estimate respiratory rate
from the electrocardiogram and photoplethysmogram,” Physiological
measurement, 2016.

[11] D. Bian et al., “Respiratory rate estimation using ppg: A deep learning
approach,” in 2020 42nd Annual International Conference of the IEEE
EMBC, 2020.

[12] J.-Y. Zhu et al., “Unpaired image-to-image translation using cycle-
consistent adversarial networkss,” in 2017 IEEE ICCV, 2017.

[13] M. A. Pimentel et al., “Toward a robust estimation of respiratory rate
from pulse oximeters,” IEEE TBME, 2016.

[14] D. A. Birrenkott et al., “A robust fusion model for estimating respira-
tory rate from photoplethysmography and electrocardiography,” IEEE
TBME, 2017.

[15] D. Jarchi et al., “Accelerometry-based estimation of respiratory rate for
post-intensive care patient monitoring,” IEEE Sensors Journal, 2018.

[16] I. J. Goodfellow et al., “Generative adversarial networks,” arXiv
preprint arXiv:1406.2661, 2014.

[17] C. Carreiras, “BioSPPy: Biosignal processing in Python,” 2015–.
[Online]. Available: https://github.com/PIA-Group/BioSPPy/

[18] J. Johnson et al., “Perceptual losses for real-time style transfer and
super-resolution,” in ECCV. Springer, 2016.

[19] K. He et al., “Deep residual learning for image recognition,” in
Proceedings of the IEEE CVPR, 2016.

[20] P. Isola et al., “Image-to-image translation with conditional adversarial
networks,” in Proceedings of the IEEE conference on CVPR, 2017.

[21] C. Li et al., “Precomputed real-time texture synthesis with markovian
generative adversarial networks,” in ECCV. Springer, 2016.

[22] C. Ledig et al., “Photo-realistic single image super-resolution using a
generative adversarial network,” in Proceedings of the IEEE CVPR,
2017.

[23] T. Noto et al., “Automated analysis of breathing waveforms using
breathmetrics: a respiratory signal processing toolbox,” Chemical
senses, 2018.

[24] W. Karlen et al., “Multiparameter respiratory rate estimation from the
photoplethysmogram,” IEEE TBME, 2013.

[25] A. M. Chan et al., “Ambulatory respiratory rate detection using
ecg and a triaxial accelerometer,” in 2013 35th Annual International
Conference of the IEEE EMBC.

747


