
  

 

Abstract— Attention-deficit/hyperactivity disorder (ADHD) is a 

prevalent neurodevelopmental disorder in children, usually 

categorized as three predominant subtypes, persistent 

inattention (ADHD-I), hyperactivity-impulsivity (ADHD-HI) 

and a combination of both (ADHD-C). Identifying reliable 

features to distinguish different subtypes is significant for 

clinical individualized treatment. In this work, we conducted a 

two-stage electroencephalogram (EEG) microstate analysis on 

54 healthy controls and 107 ADHD children, including 54 

ADHD-Is and 53 ADHD-Cs, aiming to examine the dynamic 

temporal alterations in ADHDs compared to healthy controls 

(HCs), as well as different EEG signatures between ADHD 

subtypes. Results demonstrated that the dynamics of resting-

state EEG microstates, particularly centering on salience (state 

C) and frontal-parietal network (state D), were significantly 

aberrant in ADHDs. Specifically, the occurrence and coverage 

of state C were decreased in ADHDs (p=0.002; p=0.0015), while 

the duration and contribution of state D were observably 

increased (p=0.0016; p=0.0001) compared to HCs. Moreover, the 

transition probability between state A and C was significantly 

decreased (p=9.85e-7; p=2.33e-7) in ADHDs, but otherwise 

increased between state B and D (p=1.02e-7; p=1.07e-6). By 

contrast, remarkable subtype differences were found primarily 

on the visual network (state B) between ADHD-Is and ADHD-

Cs. Specifically, ADHD-Cs have higher occurrence and coverage 

of state B than ADHD-Is (p=9.35e-5; p=1.51e-8), suggesting these 

patients more impulsively aimed to open their eyes when asked 

to keep eyes closed during the data collection. In summary, this 

work carefully leveraged EEG temporal dynamics to investigate 

the aberrant microstate features in ADHDs and provided a new 

window to look into the subtle differences between ADHD 

subtypes, which may help to assist precision diagnosis in future. 

Clinical Relevance— This work established the use of EEG 

microstate features to investigate ADHD dysfunction and its 

subtypes, providing a new window for better diagnosis of ADHD. 

I. INTRODUCTION 

Attention-deficit/hyperactivity disorder (ADHD) is a 
common neurodevelopmental disorder characterized by age-
inappropriate inattention, hyperactivity, and impulsivity, with 
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an estimated prevalence about 5-6% in children [1]. 
According to the different clinical symptoms via DSM-IV, 
ADHD can be categorized as persistent inattention (ADHD-
I), predominant hyperactivity-impulsivity (ADHD-H) and a 
combination of both (ADHD-C).  

Children with ADHD showed multimodal structural and 
functional impairments in default mode network [2], salient 
network [3] and frontal-parietal network [2], as well as disrupt 
connectivity among the triple-network model of 
pathophysiology [4, 5]. Compared to magnetic resonance 
imaging (MRI) studies, electroencephalogram (EEG) is 
readily accessible and inexpensive, which measures electrical 
activity with millisecond temporal resolution produced by 
cortical neurons [6]. Most studies of continuous EEG data 
have adopted frequency transformation, which allows to 
measure brain states varying over seconds [7]. The most 
robust EEG features associated with ADHD are elevated 
power of slow waves and decreased power of fast wave, 
which are sometimes combined and quantified by the 
theta/beta ratio (TBR) [8]. Compared to healthy controls, 
ADHD-C subtype is featured with markedly increased TBR 
with a global decrease in beta power, while ADHD-I subtype 
presents increased TBR with a widespread increase in theta 
power [9]. However, some recent studies have failed to 
replicate the TBR differences between ADHDs and non-
ADHDs [10]. Thus, researchers still struggle to identify stable 
and sensitive biomarkers for ADHDs and subtypes as well. 

In parallel, microstates are global patterns of scalp 
potential topographies that remain quasi-stable for around 60-
120ms before turning to another quasi-stable map, which may 
be considered to reflect global functional states [11]. Koening 
et al. presented four-states normative microstate maps for 
resting-state EEG data obtained from a database of 496 
subjects between 6 and 80 years old [11], which are highly 
reproducible and widely used in various pioneering work [12, 
13]. Britz et al. extended to explore the relationship between 
the EEG-defined microstates and the fMRI-defined resting 
states, which indicated that the typical four EEG topographies 
were spatially correlated with four of the resting-state 
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networks located in bilateral superior and middle temporal 
gyri, bilateral inferior occipital, salience network and frontal-
parietal network [14]. Microstates have been widely used in 
schizophrenia studies [13, 15], however, to our knowledge, no 
study to date has used microstates to investigate abnormal 
temporal dynamics on ADHDs, as well as their subtypes in 
children. 

The objectives of the present study were adopting EEG 
microstates to 1) uncover the distinct temporal dynamics 
between all ADHDs and HCs and 2) investigate unique 
temporal variations for each subtype. To achieve these goals, 
we conducted a two-level (group and subtype) EEG 
microstates analysis on 161 subjects and compared group 
differences for each microstate parameter through a variety of 
statistical methods. 

II. MATERIALS AND METHODS 

A. Participants 

A total of 161 participants, 8-15 years of age, were 
recruited in the study (123 males, 38 females). The children 
with ADHD (n=107) were enrolled from the clinics of Peking 
University Sixth Hospital. 54 healthy controls (HC) matched 
for sex and age were recruited from communities in 
Beijing. All the subjects were interviewed and underwent 
diagnosis to ADHD using DSM-IV criterion by a qualified 
psychiatrist. Kiddie Schedule for Affective Disorders and 
Schizophrenia for School-Age Children (K-SADS) was used 
to confirm the diagnosis of ADHDs and the subtypes. 
Considering the small sample size of hyperactivity subtype, 
only inattentive subtype (ADHD-I: n=54) and combined 
subtype (ADHD-C: n=53) were included in the present study. 
To exclude the potential effects of medication on the results, 
all patients were drug-naïve or stopped taking drugs for 
>1 week. All participants met the following criteria: (a) no 
history of head trauma with a loss of consciousness, 
neurological illness or other severe disease, and (b) no current 
diagnosis of schizophrenia, severe emotional disorder, or 
pervasive developmental disorders and (c) a full-scale IQ 
above 80. Written informed consents were obtained from all 
children and their parents. Moreover, no significant group 
differences were observed in terms of gender (𝑋2(1) = 0.729, 
p =0.393) and age (t = -1.357, p = 0.176) between ADHDs 
and HCs. The ADHD-C subtypes also matched well with 
ADHD-I subtypes in gender (𝑋2(1) = 0.343, p =0.558) and 
age (t = -0.05, p = 0.957). This study was approved by the 
Medical Ethics Committee of Peking University Sixth 
Hospital/Institute of Mental Health.  

B. Data acquisition and preprocessing 

EEG data was recorded by EGI-128 HydroCel Geodesic 
Sensor Net (Electrical Geodesics, Inc., Eugene, OR), with Cz 
as the online reference, 0.01–400 Hz bandpass filter and 
1000 Hz sampling rate. Participants were instructed to 
maintain a steady state with closed eyes for 6 minutes. The 
electrodes impedance was kept below 50 kΩ during the data 
acquisition. 

Offline EEG processing were conducted using EEGLAB 
toolbox(https://sccn.ucsd.edu/eeglab/index.php). Thirty-eight 
lateral electrodes were excluded because of their 
susceptibility to movement interference. The resampling 
frequency was 250 Hz, and the bandpass filter band was 1–

45 Hz. The signals were then re-referenced to the average 
reference. Electrodes containing excessive artifacts were 
manually checked and interpolated. The time series were 
subsequently inspected and rejected before an independent 
component analysis (ICA) decomposition. The components 
related to vertical and horizontal eye movements were 
visually inspected and removed. The trimmed data were 
segmented into contiguous 2-s windows and any segments 
with voltages exceeding ± 100 µV were rejected, free of 
artifacts data were concatenated and the first 2 minutes were 
extracted for following analysis.  

C. Computing microstates features 

The microstate analysis was performed using an Matlab 
plugin for the EEGlab toolbox 
(http://www.thomaskoenig.ch/index.php/software/microstate
s-in-eeglab/ ). Global field power (GFP) of the preprocessed 
resting-state EEG data was first computed at each time point 
for each subject. GFP is a measure of potential variance across 
the set of electrodes at a given time point as defined below:  

𝐺𝐹𝑃(𝑡) = √∑ (𝑉𝑖(𝑡)−𝑉𝑚𝑒𝑎𝑛(𝑡))
2𝑛

𝑖=1

𝑛
                    (1) 

where,  𝑖 is the electrode, 𝑛  represents the number of 
electrodes, 𝑉 represents measured voltage, 𝑡 is the time point. 

Since scalp topographies remain quasi-stable around GFP 
peaks and present the highest signal-to-noise ratio, only EEG 
maps at the peaks were used for the subsequent clustering 
analysis. K-means clustering was then conducted on the peak 
GFP data to identify the most dominant topographies as 
microstates [13]. To further compare and interpret our results 
with previous studies, we assembled to select the number of 
clusters as four and labeled them A-D according to their 
similarities to Koening et al.’s four-states normative 
microstate [16]. The final maps were then quantified using 
global explained variance (GEV), which measures how well 
the spatial maps could explain the variance of the whole data. 
To reduce the influence of randomly selected initial template 
maps, we repeated the clustering procedure for hundreds of 
times and selected the microstates with the highest GEV [17]. 

 The clustering analysis was first conducted at the 
individual level and then across subjects in each group. For 
cross-group comparison, we subsequent computed mean 
microstate topographies cross different groups and reoriented 
each group-level map according to these group-mean 
topographies. The group-level spatial maps were further 
served as a reference map to back fitting for each subject, 
where topographies at each time point were spatially 
correlated with each group-level map and labeled based on 
the most correlated map. At last, four microstate parameters 
for each subject were calculated: mean duration, time 
coverage, occurrence and transition probabilities [18]. The 
mean duration (in ms) is the average length of time a given 
microstate remains stable when it appears (yielding 4 
features). The frequency of occurrence is the average number 
of times per second that the microstate becomes dominant 
during the whole recording time (yielding 4 features). The 
coverage (in %) is the percentage of the total recording period 
that the microstate is dominant (yielding 4 features). The 
transition probability quantifies the transformation from one 
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state to another state (yielding 12 features). Altogether, a total 
of 24 features were achieved for subsequent analysis. 

D. Two-level statistical analysis 

To investigate whether the computed microstate 
parameters reflect variations between ADHDs and HCs, as 
well as between different ADHD subtypes, we divided the 
analysis into two parts. At the first stage, we conducted group-
level clustering analysis across all the ADHD patients and 
heathy controls, followed by calculating microstates 
parameters for each group. A two-way ANOVA with group 
and microstates as factors was then performed for each of the 
four computed microstate parameters to identify the 
significant discriminate microstate features, followed by two-
sample t-tests between ADHDs and HCs for each significant 
microstate feature. At the second stage, group-level clustering 
was conducted respectively for ADHD-Cs and ADHD-Is 
subtype. We adopted the new topographies for back fitting 
and computed microstates parameters for each subtype 
participant. Then, we compared the group difference between 
ADHD-Cs and ADHD-Is for each of the computed microstate 
parameters using ANOVA and two sample t-test. Note that 
pairwise group comparison for all microstate parameters in 
each stage were corrected for multiple comparisons with 
Bonferroni-correction with p<0.05/24.  

III. RESULTS 

A.  Microstates between ADHDs and HCs 

The four microstates for patients and controls are presented 
in Fig. 1. In both groups, the four microstate maps consistently 
resembled those identified in the previous literature[11]: State 
A and state B with diagonal axis orientations of the 
topographic map filed, state C with anterior-posterior 
orientation and state D with a front-central location. The four 
microstates across participants explained 80.67% and 80.89% 
of the global variance in the patients and controls respectively. 
The subsequent Kruskal-Wallis test showed non-significant 
group difference between ADHDs and HCs for each 
topography maps (p(A)=0.99, p(B)=0.98, p(C)=0.93, 
p(D)=0.99).  

 

Figure 1. The spatial maps of the four microstates for ADHD patients and 

controls. Red color indicates positive values and blue color represents 
negative values.  

Based on the identified four microstates, we computed 
four parameters for each subject: mean duration, time 
coverage, frequency of occurrence and transition probabilities. 

Two-way ANOVA analysis show significant microstate×
group interaction effects for mean duration (F=8.54, p=1.56e-
5), time of coverage (F=13.86, p=1.10e-8), occurrence 
(F=11.78, p<1e-12) and transition probabilities (F=12.07, 
p<1e-12). Post-hoc pairwise comparisons based on the two 

variance-equal groups revealed that the occurrence and 
coverage of state A (p=0.005; p=3.39e-5) and state C 
(p=0.002; p=0.0015) were markedly decreased in ADHDs, 
while the duration and contribution of state B (p=0.003; 
p=0.0002) and state D (p=0.0016; p=0.0001) were 
significantly increased in ADHDs compared to controls (Fig. 
2, Table 1). These results are in keeping with the triple-
network model of pathophysiology associated with ADHD 
[4], including aberrant salience-processing (state C) and 
fronto-parietal network (state D). Moreover, the transition 
probability between state A and state C (p=9.85e-7; p=2.33e-
7) was significantly decreased in patients, whereas increased 
between state B and D (p=1.02e-7; p=1.07e-6) in patients with 
ADHD compared to healthy controls. 

 
Figure 2. Results of the microstate analysis for ADHDs vs HCs. 

Table 1. Two sample t-test for each feature between ADHDs and HCs 

Parameters p value TP p value 
D (A) 0.07 AB 0.85 
D (B) 2.93E-03 AC 9.85E-07* 
D (C) 0.59 AD 0.71 
D (D) 1.57E-03* BA 0.97 
O (A) 5.46E-03* BC 0.34 
O (B) 0.31 BD 1.02E-07* 

O (C) 2.75E-03 CA 2.33E-07* 
O (D) 0.12 CB 0.52 
C (A) 3.39E-05* CD 0.95 
C (B) 2.07E-04* DA 0.42 
C (C) 1.46E-03* DB 1.07E-6* 
C (D) 1.26E-04* DC 0.96 

 

Note: D = Duration, O = Occurrence, C = Contribution, TP = Transition 

probability, *represents the p value was Bonferroni corrected with p<0.05/24. 

B. Microstate patterns for ADHD-Cs and ADHD-Is 

The four microstates for ADHD-Cs and ADHD-Is are 
shown in Fig. 3. In both sub-groups, the four microstate maps 
also resembled previously identified ones[11]. The four 
microstates across participants explained 80.06% and 80.31% 
of the global variance for ADHD-Cs and ADHD-Is. The 
subsequent Kruskal-Wallis test showed non-significant group 
difference between two subtypes for each topography maps 
(p(A)=0.99, p(B)=0.95, p(C)=0.95, p(D)=0.99). Two-way 
ANOVA analysis based on the calculated four microstate 

parameters demonstrated significant microstate × group 

interaction effects for mean duration (F=4.24, p=0.0059), 
time of coverage (F=8.77, p=1.32e-5), occurrence (F=6.47, 
p=0.0003) and transition probabilities (F=8.2, p<1e-12). Not 
surprisingly, we found no significant differences in the 
general properties of microstates C and D between the two 
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variance-equal subtypes (Fig. 4, Table 2), as the common 
inattention characteristic featured by salience and fronto-
parietal network disruption is shared between two subtypes. 
Instead, the occurrence and coverage of state B (associated 
with visual network) were remarkably increased in ADHD-
Cs, while the duration and contribution of state A (associated 
with temporal network) were observably decreased in 
ADHD-Cs compared to ADHD-Is. Furthermore, the 
transition probability between state A and state C (p=9.25e-8; 
p=1.78e-8) was evidently decreased in ADHD-Cs, whereas 
increased from state B to state D (p=9.86e-9; p=2.54e-7) in 
patients with ADHD-Cs compared to ADHD-Is. 

 
Figure 3. The spatial maps of the four microstates for ADHD-Cs and 

ADHD-Is. Red color indicates positive values and blue color represents 

negative values. 

 
Figure 4. Results of the microstate analysis for ADHD-Cs vs ADHD-Is 

Table 2. Two sample t-test for each feature between two subtypes 

Parameters p value TP  p value 

D (A) 3.89E-04* AB 0.27 

D (B) 0.03 AC 9.25E-08* 

D (C) 0.07 AD 0.15 

D (D) 0.79 BA 0.19 

O (A) 0.24 BC 0.25 

O (B) 9.35E-05* BD 9.86E-09* 

O (C) 0.25 CA 1.78E-08* 

O (D) 0.06 CB 0.08 

C (A) 1.70E-05* CD 0.07 

C (B) 1.51E-08* DA 0.14 

C (C) 0.01 DB 2.54E-07* 

C (D) 0.18 DC 0.12 
 

Note: D = Duration, O = Occurrence, C = Contribution, TP = Transition 

probability, *represents the p value was Bonferroni corrected. 

IV. CONCLUSION 

Results from this study suggest that the temporal 
dynamics of resting-state EEG microstates, particularly state 
C and D, centering on salience network and a frontal-parietal 
network, show promise as potential biomarkers for ADHD. 

While the ADHD-C is more activated on state B (visual 
network) compared to ADHD-I. This study highlights EEG 
microstate features potentially as a sensitive measurement to 
detect the disruptions for ADHD and the subtypes, which may 
be an interesting direction to develop machine learning 
models based on these features in the future. 
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