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Abstract— Heart Period (H) results from the activity of sev-
eral coexisting control mechanisms, involving Systolic Arterial
Pressure (S) and Respiration (R), which operate across multiple
time scales encompassing not only short-term dynamics but also
long-range correlations. In this work, multiscale representation
of Transfer Entropy (TE) and of its decomposition in the
network of these three interacting processes is obtained by
extending the multivariate approach based on linear para-
metric VAR models to the Vector AutoRegressive Fractionally
Integrated (VARFI) framework for Gaussian processes. This
approach allows to dissect the different contributions to cardiac
dynamics accounting for the simultaneous presence of short and
long term dynamics. The proposed method is first tested on
simulations of a benchmark VARFI model and then applied to
experimental data consisting of H, S and R time series measured
in healthy subjects monitored at rest and during mental and
postural stress. The results reveal that the proposed method
can highlight the dependence of the information transfer on
the balance between short-term and long-range correlations in
coupled dynamical systems.

I. INTRODUCTION

In the study of complex biomedical systems represented
by multivariate stochastic processes, such as the cardiovas-
cular and respiratory systems, an issue of great relevance
is the description of the system dynamics spanning multiple
temporal scales [1]. Recently, the quantification of multiscale
complexity based on linear parametric models, incorporating
autoregressive coefficients and fractional integration, encom-
passing short-term dynamics and long-range correlations,
was extended to multivariate time series [2]. Reliable es-
timation of Transfer Entropy (TE) can be achieved at longer
time scales only when long range correlations are properly
modeled and, moreover, the latter have been demonstrated
to influence the complexity of cardiovascular time series
[3]. Within the Vector AutoRegressive Fractionally Integrated
(VARFI) framework formalized for Gaussian processes, in
this work we propose to estimate the TE, or equivalently
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Granger Causality, in the cardiovascular and respiratory
systems. This allows to assess the information flow and
the directed interactions accounting for the simultaneous
presence of short-term dynamics (corresponding to high fre-
quency oscillations) and long-range correlations (reflecting
slower oscillations with lower frequencies).

The proposed approach, described in sections II, III, is
firstly tested on simulations of a benchmark VARFI in section
IV. Then, in section V, it is applied to experimental data
consisting of heart period (H), systolic arterial pressure (S)
and respiration (R) time series measured in healthy subjects
monitored at rest and during mental and postural stress.

II. INFORMATION TRANSFER DECOMPOSITION

In the information-theoretic framework, the directed trans-
fer of information between components of a network of in-
teracting processes is assessed by the TE. Here, we consider
H as the target process and S and R as the sources. The
information transferred individually from S to H and from
R to H is quantified by the individual TEs:

TS→H = I
(
Hn;S−n | H−n

)
, (1)

TR→H = I
(
Hn;R−n | H−n

)
, (2)

where I(:; :|:) denotes conditional mutual information, Hn
denotes the present state of H, and H−n , S−n and R−n represent
the past states of H,S and R, respectively. Moreover, the joint
TE (JTE) quantifies the information transferred towards H
from the sources R and S when they are taken together and
is thus defined as [4]

TRS→H = I
(
Hn;S−n ,R

−
n | H−n

)
. (3)

Generally, the JTE differs from the sum of the two
individual TEs, since R and S typically interact with each
other while they transfer information to H (as reflected by In-
teraction Transfer Entropy (ITE), IRS→H ). Such an interaction
is synergistic (IRS→H > 0) if the two sources transfer more
information to the target when they are considered together
than when they are considered individually, and is redundant
(IRS→H < 0) in the opposite case. The Interaction Information
Decomposition (IID) of the JTE is given by [4]:

TRS→H = TS→H +TR→H + IRS→H . (4)

III. MULTISCALE IID OF VARFI PROCESSES

To describe both short-term dynamics and long-range
correlations we represent the multivariate process X =
[XR,XS,XH ] with a VARFI model [5]:
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A(L)diag
(
∇

d)Xn = En (5)

where L is the back-shift operator
(
LiXn = Xn−i

)
,A(L) =

I3−∑
p
i=1 AiLi (I3 is the identity matrix), A(L) is a vector au-

toregressive (VAR) polynomial of order p, and diag
(
∇d)=

diag
[
(1−L)di

]
, i = R,S,H, and (1− L)di is the fractional

differencing operator. The parameter d = (dR,dS,dH) deter-
mines the long-term behavior of the process Xi, while the
coefficients of A(L) allow the description of the short-term
dynamics. A VARFI(p,d) is approximated by a finite order
VAR(p+ q) process, p is chosen by Bayesian Information
Criterion (BIC) and q = 50 [2].

The multiscale representation is obtained through filtering
the time series after standardization (mean 0 and variance
1) using a lowpass filter with cutoff frequency 1/2τ and
then downsampling the series using a decimation factor
τ [4]. Exact expressions of the information transfer are
obtained using innovations state space (ISS) representation
for coupled Gaussian processes at multiple temporal scales
[4]. The individual and joint TE, (1)-(2) are obtained from
the prediction error variances as

Ti→ j =
1
2

ln
λ j| j
λ j|i j

, (6)

Tik→ j =
1
2

ln
λ j| j

λ j|i jk
, (7)

with λ j| j variance of the prediction error on X−j,n, λ j|i j

variance of the prediction error of X j on
[
X−j,n,X

−
i,n

]
and λ j|i jk

variance of the prediction of error of X j on
[
X−j,n,X

−
i,n,X

−
k,n

]
(i,k, j = R,S,H).

IV. SIMULATION STUDY

To investigate the theoretical properties of the TE mea-
sures in presence of long memory we incorporate long range
correlations [3] in a benchmark trivariate VAR model [6],
where S and H interact in a closed loop, both driven by R:

Rn = 2ρr · cos2π fr ·Rn−1−ρ
2
r ·Rn−2 +Ur,n, (8)

Sn = 2ρs · cos2π fs ·Sn−1−ρ
2
s ·Sn−2 +a ·Hn−2 + e ·Rn−1 +Us,n,

Hn = 2ρh · cos2π fh ·Hn−1−ρ
2
h ·Hn−2 +b ·Sn−1 + c ·Rn−1 +Uh,n.

The parameters of the model were set to reproduce oscilla-
tions and interactions commonly observed in cardiovascular
and cardiorespiratory variability [6], i.e, the self-sustained
dynamics typical of R (ρr = 0.9, fr = 0.25) and the slower
oscillatory activity commonly observed in the so-called low-
frequency (LF) band in the variability of S (ρs = 0.8, fs =
0.1) and H (ρh = 0.8, fh = 0.1).

Illustrative theoretical profiles of the multiscale TEs and
of the interaction for a VARFI process, varying the long
memory parameter d of the target H, are presented in Fig.1.
Generally, the individual and joint information transfer at
longer time scales increase with d of the target. On the other
hand, ITE decreases suggesting an increased redundancy
(lower right panel of Fig.1). The theoretical profiles of
multiscale TE (Fig.2) varying d of the sources suggest

opposite trends: TE decreasing with d and increased synergy
regarding ITE.
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Fig. 1. Theoretical profiles of TS→H , TR→H , TR,S→H and of the interaction
IR,S→H for a VARFI process with fixed long memory parameters dr = 0.1,
ds = 0.25 (sources) and varying dh, 0 (blue) - 0.7 (red).
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Fig. 2. Theoretical profiles of TS→H , TR→H , TR,S→H and of the interaction
IR,S→H for a VARFI process with fixed long memory parameters dr = 0.1,
dh = 0.45 (source and target) and varying ds, 0 (blue) - 0.7 (red). Note that
for TR→H all the profiles coincide.

V. APPLICATION TO EXPERIMENTAL DATA
A. Experimental Protocol

The H, S and R time series (stationary windows of at least
400 beats) were measured in a group of 62 healthy subjects
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(19.5 3.3 years old, 37 females) monitored in the resting
supine position (SU1), in the upright position (UP) reached
through passive head-up tilt, during the recovery in supine
position (SU2) and during a mental arithmetic task (MA) in
the supine position [2], [7]. The experimental procedure was
approved by the local ethical committee.

B. Results and Discussion

The decomposition of the joint information transfer ev-
idences different types of contributions with physiological
meaning. The analysis of the data in the resting supine
(SU1) and the upright position (UP) for the VARFI modeling
approach is summarized in Figs.3-4. For SU1 at τ = 1,
TR→H > TS→H (left column of Fig.3), indicating prevalence
of Respiratory Sinus Arrhythmia (RSA), i.e. the heart rate
oscillations related to the respiration [7]. At τ = 1, TR→H
in SU1 is higher than in UP, while at τ > 1 TR→H in
UP is higher than in SU1 (lower left panel of Fig.3). The
multiscale representation allows to highlight that RSA for
slow oscillations is enhanced by tilt; this may be an effect
of long-range correlations, as suggested by the simulation
of TR→H (Fig.1) where the information transfer at long time
scales increases with d of target.

The postural stress induced by UP is associated with a
markedly higher TS→H (upper left panel of Fig.3) at low
time scales (up to ≈ 5). This finding is in agreement with
previous works reporting baroreflex activation with UP [7]–
[10]. For the UP position, at τ = 1 the information transfer
from R to H is lower. This finding is consistent with previous
works reporting weakening of RSA with UP [7]–[10]. In
particular, in [7] the drop of the TRESP→HP has been ascribed
to a dampening of the nonbaroreflex path of RSA. The two
previous effects determine a higher joint information transfer
TR,S→H during UP for scales up to τ ≈ 10. The ITE decreases
significantly with tilt (lower right panel of Fig.3), denoting
stronger redundancy, as expected from previous works [7].

Fig.4 reports the mean and 95% confidence intervals of
the paired differences between the values of TE measures
computed in UP and SU1 conditions for VAR and VARFI
based approaches; the statistical variation from SU1 to UP is
detectable at a given timescale if the confidence intervals do
not encompass the zero line. Comparing VARFI with VAR
model, higher values of TS→H are reported using VARFI dur-
ing UP for all time scales, while for TR,S→H this occurs only
for τ > 3. These trends suggest that long-range correlations
affect the changes of cardiovascular information transfer
during UP, especially with regard to slower oscillations.

The results obtained comparing the SU2 and MA phases
for VARFI are presented in Fig.5-6. The transfer entropy
TS→H at longer time scales (τ > 1) is higher during MA if
compared to SU2, while this does not occur for τ = 1. The
transfer entropy TR→H at scale τ = 1,2 is lower during MA
than during SU2, while the opposite occurs at longer time
scales (τ > 2).

Overall, the reported trends suggest that, at lower time
scales, MA produces an increase of the information transfer
from S to H and a simultaneous decrease of the information
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Fig. 3. Median and quartiles of TE measures across subjects during the
resting supine (SU1) and postural stress (UP) using the VARFI approach.
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Fig. 4. 95% C.I. of the paired difference between tilt and rest UP−SU1
of each measure computed for the VARFI (blue) and VAR (red) models.

transfer from R to H similar to what observed during UP
(Fig.3). Such results are in agreement with those reported
in [7] suggesting an overall weakening of RSA due to vagal
inhibition provoked by stress challenges [7]–[9] and the non-
activation of the baroreflex-mediated RSA (R → S → H),
conversely to what happens with UP. The different trends
found for longer time scales support the usefulness to employ
a multiscale approach in the analysis of cardiovascular and
cardiorespiratory interactions [2], [7]. The increase of TS→H
for scales τ > 1 and of TR→H for scales τ > 2 suggests
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Fig. 5. Median and quartiles of TE measures across subjects during the
recovery supine (SU2) and mental stress (MA) using the VARFI approach.

complex multiscale patterns adaptably responding to stress
challenges and highlight that both lower baroreflex-mediated
transfer of S oscillations and of slowly varying respiration
influences to H occur during mental stress (due to changes
of breathing patterns) [10].

The JTE TR,S→H at scale τ = 1 is higher at SU2 than during
MA, while the opposite occurs at longer time scales (τ > 1).
Mental stress produces increased ITE only at τ = 1, which
means decreased redundancy and reduced joint information
transfer, but only for τ = 1. Conversely, the significantly
higher redundancy found for τ = 3 may be due to an
involvement of respiration also in the LF band (caused by
changes in the respiration pattern).

The mean and 95% confidence intervals of the paired
differences between the values of TE measures computed
in SU2 and MA conditions for VAR and VARFI based
approaches are presented in Fig.6, and indicate that higher
values of TS→H and TR,S→H are reported using VARFI during
MA for longer time scales (τ > 3). This suggests that long-
range correlations can detect changes due to mental stress,
but only regarding slower oscillations. Similar trends are
reported in terms of the information transfer from R to H and
the interaction transfer entropy, which are almost identical,
suggesting that long-range correlations do not influence these
information measures.

VI. FINAL REMARKS

The VARFI approach to multiscale TE allows to assess
the overall role of long range correlations in simulated and
experimental data. We find that long range correlations in
the target process enhance the information transfer, and this
occurs particularly in response to postural stress.
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Fig. 6. 95% C.I. of the paired difference between MA and SU2 (MA−SU2)
of each measure computed for the VARFI (blue) and VAR (red) models.
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