2021 43rd Annual International Conference of the
IEEE Engineering in Medicine & Biology Society (EMBC)
Oct 31 - Nov 4, 2021. Virtual Conference

A Machine Learning Understanding of Sepsis

Manish Shetty!, Soumya Mary Alex?, Merlin Moni*, Fabia Edathadathil?, Preetha Prasanna?,
Veena Menon?, Vidya P. Menon?, Prashanth Athri®, Gowri Srinivasa'™, Senior Member, IEEE

Abstract— Sepsis is a serious cause of morbidity and mortal-
ity and yet its pathophysiology remains elusive. Recently, medi-
cal and technological advances have helped redefine the criteria
for sepsis incidence, which is otherwise poorly understood.
With the recording of clinical parameters and outcomes of
patients, enabling technologies, such as machine learning, open
avenues for early prognostic systems for sepsis. In this work, we
propose a two-phase approach towards prognostic scoring by
predicting two outcomes in sepsis patients - Sepsis Severity and
Comorbidity Severity. We train and evaluate multiple machine
learning models on a dataset of 80 parameters collected from
800 patients at Amrita Institute of Medical Sciences, Kerala,
India. We present an analysis of these results and harmonize
consistencies and/or contradictions between elements of human
knowledge and that of the model, using local interpretable
model-agnostic explanations and other methods.

I. INTRODUCTION

Sepsis - a condition caused most frequently by a systemic
bacterial infection, but also by viral, fungal, and microbial
infections, is amongst the leading causes of death in the
world [1]. Mortality remains elevated post discharge, particu-
larly in infants in low income settings [2]. The World Health
Organization estimated 49 million cases and 11 million
sepsis related deaths occurred in the year 2017, accounting
for 20% of annual global deaths . In the context of such
alarming metrics, multiple studies have worked towards
the early diagnosis and treatment of this condition [3]-[5].
More recent studies have also examined the effectiveness of
existing treatment methods [6]. Effective treatment plans and
preventive measures for patients at risk of developing sepsis
is dependent on early and accurate diagnosis of the condition.

The definition of “sepsis” has evolved over the years with
the expansion in knowledge of sepsis pathophysiology and
medical prognosis [7], [8]. The first consensus definition of
sepsis [9], developed in 1991, defines sepsis based on the
occurrence of two or more Systemic Inflammatory Response
Syndrome (SIRS) criteria in response to an infection. Based
on severity, it also classifies sepsis sub-types as “Sepsis”,
“Severe Sepsis”, and “Septic Shock”. Here, “Severe Sep-
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sis” is the condition of sepsis with an associated organ
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dysfunction, and “Septic Shock” further includes refractory
hypotension [10].

While the classification based on severity is useful, in
the following years much has been discussed about the
effectiveness of the SIRS criteria. Recently, recognizing
the need to re-examine current definitions, the European
Society of Intensive Care Medicine (ESICM) and Society
of Critical Care Medicine (SCCM) convened a task force of
19 specialists. The current use of 2 or more SIRS criteria
to identify sepsis was unanimously considered unhelpful.
They defined sepsis (Sepsis-3) [11] as - “a life-threatening
organ dysfunction caused by a dysregulated host response to
infection”. They state further, that organ dysfunction can be
represented by an increase in the Sequential [Sepsis-related]
Organ Failure Assessment (SOFA) score of 2 points or more.

With advances in machine learning, multiple efforts have
been made to tackle the task of predicting sepsis. Prior work
includes exploration of survival models [12], Hidden Markov
Models [13], and Recurrent Neural Networks [14]. Such
models rely on the assumption that a patient’s clinical param-
eters is a time series of variables and lack the interpretability
necessary in the medical field. Other simpler approaches have
also been explored, such as a modified Weilbull-Cox model
for prediction of sepsis [5] and logistic regression models to
predict mortality risk of sepsis patients [4].

In this work, we aim to develop and evaluate various
simple machine learning methods for early prognosis of
sepsis severity. This can enable downstream activities such
as treatment planning and preventive measures to control
the severity of the diagnosed condition. Inspired by vari-
ous studies using admission-time data to diagnose patient
health status and trends [15] and the potential of machine
learning models to support decision making [16], we use
data collected and provided by the Amrita Institute of
Medical Sciences (AIMS) hospital in our study. Please refer
to Section II for details on the data. For validation, we
make use of the latest definition of “sepsis” as well as the
severity classification and frame the primary problem as the
prediction of “Sepsis Severity” using the “Surviving Sepsis
Campaign” guidelines [17].

Comorbidities are coexistent diseases to a disease of
interest or an index disease, which may directly affect the
prognosis of the disease of interest, or indirectly influence
the choice of treatment [18]-[20]. Chronic comorbid medical
conditions are present in 54—65% of all sepsis patients [21],
[22] and strongly influence outcomes. Typically, the severity
of patients’ comorbidities are evaluated by summary mea-
sures that attribute fixed weights to various conditions, and
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then sum the weights of those conditions that are present
in a patient. We propose that such measures can be viewed
as a transformation over recorded clinical parameters that
define presence or absence of these comorbid conditions.
Thus, we additionally aim to predict “Comorbidity Severity”
as a bucket/range of one such prognostic metric - Charlson
Comorbidity Index (CCI) [23]. Refer to Section II for more
details on CCI bucketing.

Lastly, we evaluate the ability of our model to learn
logical reasons to make critical decisions by interpreting the
importance and weights assigned to features by the model.
Additionally, we showcase our model’s interpretability via
local surrogate model explanations that can aid medical
experts to validate and ensure effective treatment plans.
Using these explanations, we prove that our model is in con-
formance with the latest clinical criteria defined to identify
sepsis (Section V). In this work we make the following main
contributions:

1) We propose a novel 2 phase approach towards a
prognostic scoring system by predicting two comple-
mentary outcomes in sepsis patients - Sepsis Severity
and Comorbidity Severity.

2) We evaluate multiple machine learning models on the
data of 800 patients using 5 fold cross validation.

3) We interpret and explain multiple single patient pre-
dictions and map machine understanding to published
domain knowledge that is currently used in the field.

4) Lastly, we open-source the code, model, and pre-
processed data—https://interpretsepsis/repository.

II. DATA USED IN THIS STUDY

| | | |
D0Menl 0 Women | 248

206
200 |- M a

Count

100 - 90 94 .
72

33 32
10
0 réwl\ "_‘ ‘!_\

T
5-20 20-40 40-60 60-80 80-100
Age Group

Fig. 1. Distribution of Patients

We make use of data of 800 patients, collected and
provided by Amrita Institute of Medical Sciences (AIMS).
The study has been approved by AIMS and complies with
the Helsinki Declaration of 1975, as revised in 2000. It is
ensured that all subjects in the data set have been thoroughly
de-identified. This study is retrospective and has not influ-
enced the course of treatment of the patients in anyway.
Each patient record consists of around 80 features that can
be categorized as—-On Admission Parameters and Clinical
Parameters. On Admission Parameters include features such
as Age, Gender, Name, etc., that were collected on the
patient’s admission to the hospital. Clinical Parameters are
features such as Heart Rate, Temperature, PH, etc., that

were collected during treatment, i.e., the patient’s stay in
the Intensive Care Unit (ICU). Features also include specific
sepsis and organ failure related parameters, such as SOFA
(Sequential Organ Failure Assessment) scores [24]. SOFA
scores were collected at 2 time-steps - on admission (ASOFA)
and after a 72 hours stay in the ICU (NSOFA). For all
practical purposes, a patient’s data here is a flattened list of
features that describes their overall health in the ICU, rather
than a time series of recorded variables. This is particularly
useful, as we can use instantaneous data, rather than historic,
for near real-time prognosis of the severity of sepsis in any
patient. Figure 1 shows the distribution of patient data with
respect to their reported gender and age. In Figure 1, the
upper limit for ‘Age Group’ is inclusive and lower is not.

We take a 2 phase approach towards a prognostic scoring
system by predicting 2 outcomes (predictor variables) in
sepsis patients-Sepsis Severity and Comorbidity Severity. In
our study, Sepsis Severity can take 3 possible values:

1) Sepsis (34%)

2) Severe Sepsis (54.3%)

3) Septic Shock (11.7%)

Typically, Comorbidity Severity in patients is evaluated by a
measure that attributes weights to various conditions present
in a patient. The Charlson Comorbidity Index (CCI) [23] is
the most widely used and verified comorbidity index. In our
study, similar to Huang et al. [25], patients were assigned
Comorbidity Severity by bucketing them into three groups
based on CCI:

1) Mild (26.3%), if CCI < 3

2) Moderate (33.6%), if 3< CCI < 4

3) Severe (40.1%), if CCI > 5

Note that, while predicting Comorbidity Severity we do not
use the features—Charlson Comorbidity Index (CCI) and the
known predictor variable Sepsis Severity, to avoid any bias.

ITII. PROPOSED METHOD
A. Data Pre-processing

Patient data collected at the bedside are prone to errors
such as missing values, inconsistent spellings, etc. This is
mainly due to manual filling of records as and when certain
parameters are collected during treatment. All such instances
were manually identified and fixed. Further, all binary valued
parameters were converted to {True, False}. All categorical
features were cleaned and converted to lowercase. Next,
the cleaned data was pre-processed to be used as features
for machine learning models. Categorical features were en-
coded [26] and any missing inputs were mapped to the value
-1. Note, that we do not impute any categorical features.

On the other hand, numeric features were imputed us-
ing Regression Imputation [27]. Here, missing values can be
imputed by fitting a curve to existing complete data, i.e., esti-
mate the missing values by regression using other variables
as parameters. A challenge with this approach is that the
imputed data does not have an estimation of error. Thus, any
imputed value can cause relationships to be over identified
(reduce variance) and suggest greater precision. Thus, we
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use a variation called Stochastic Regression Imputation [28]
and add the average regression variance to the imputations.

TABLE I
COMPARISON OF 5 FOLD CROSS VALIDATION METRICS FOR

Sepsis Severity CLASSIFICATION

Model Label Pre. Rec. F1 Acc. (£ std)
AdaBoost 1 0.77 0.78 0.77
2 0.89 0.81 0.85 0.82 (& 0.037)
3 048 0.67 0.56
Avg  0.80 0.78 0.79
GradientBoosting 1 0.82 0.80 0.81
2 093 0.88 091 0.92 (+ 0.016)
3 0.52 0.67 0.58
Avg 085 0.83 0.84
Linear SVM 1 0.66 0.54 0.60
2 093 042 0.8 0.64 (& 0.05)
3 0.24 090 0.38
Avg 076 052 0.56
Random Forest 1 0.82 0.89 0.85
2 0.86 094 0.90 0.93 (£ 0.02)

3 089 0.38 0.53
Avg 085 0.85 0.84

TABLE I
COMPARISON OF 5 FOLD CROSS VALIDATION METRICS FOR

Comorbidity Severity CLASSIFICATION

Model Label Pre. Rec. F1 Acc. (£ std)

AdaBoost 1 0.87 094 091
2 0.77 049 0.60 0.81 (& 0.02)

3 0.69 090 0.78

Avg 077 0.76 0.75

GradientBoosting 1 0.88 091 0.90
2 072 0.56 0.63 0.82 (£ 0.05)

3 071 085 0.77

Avg 076 0.76 0.76

Linear SVM 1 0.72 0.88 0.79
2 0.65 0.34 045 0.57 (£ 0.05)

3 0.67 087 0.76

Avg  0.68 0.68 0.66

Random Forest 1 091 0.88 0.89
2 0.74 052 0.61 0.85 (£ 0.04)

3 0.69 091 0.78
Avg 077 0.76 0.74

B. Models

Considering the size of our dataset and the high dimen-
sionality of features, we chose supervised machine learning
models that are known to perform well with such conditions.
Support vector machines (SVMs) [29] are effective in high
dimensional spaces with multiple choices for kernels. After
experiments, we found that a linear kernel SVM with a
one-vs-rest scheme is the best option for our high dimen-
sional dataset. Another popularly used model is Random
Forests [30] which achieves high accuracies and generaliz-
ability by constructing a multitude of decision trees with ran-
dom feature selection to reduce overfitting. Recently, other

models such as AdaBoost [31] and Gradient Boosting [32]
classifiers have also been widely used. Both the algorithms
boost the performance of a simple base-learner by iteratively
shifting the focus towards problematic observations that are
challenging to predict. We train and evaluate our models
using the traditional K-fold cross validation, with an 80:20
train:test split. Note, in this work, we aim to use sim-
ple machine learning approaches over complex algorithms,
guided by the scale of data, overcoming overfitting, and also
prioritizing interpretability (Refer Section V).

IV. EVALUATION

Tables I & II present precision, recall, F1 (harmonic
mean of precision and recall), and accuracy for 5-fold cross
validation of all models for Sepsis Severity and Comorbodity
Severity prediction respectively. The row marked Avg for
each model refers to the weighted average of each metric
(column) over all label types. In Table I, the label types 1,2,
and 3 map to “Sepsis”, “Severe Sepsis”, and “Septic Shock”
respectively. In Table II, the label types 1,2, and 3 map to
“Mild”, “Moderate”, and “Severe” respectively.

From Table I, Random Forest and Gradient Boosting are
the top contending models for sepsis severity predicition.
To further improve the performance of the classifiers, we
explored ensembling techniques that use a voting mechanism
over different combinations of these models: a combination
of Random Forest and Gradient Boosting yielded the highest
F1 scores—{Sepsis: 0.86, Severe Sepsis: 0.91, Septic Shock:
0.65}. This combination performs no worse than either
classifier used in exclusion and performs better than any
other combination of classifiers in Table I. Similarly, for
comorbidity severity prediction (refer Table II), we see that
Random Forest and Gradient Boosting are the best models
and also that their ensemble combination performs the best.
Lastly, from Table I, we see that all models are relatively
less accurate in predicting “Septic Shock” (Class 3). To
understand this further, we explored the general variance
within each class by measuring the mean (1) and the variance
(%) of individual feature variances. We find that datapoints
labeled “Septic Shock” (1 = 0.08,02 = 0.006) are more
dispersed compared to “Sepsis” (1 = 0.05, 02 = 0.004) and
“Severe Sepsis” (¢ = 0.06,02 = 0.005). This explains the
inherent difficulty for models to predict “Septic Shock”.

V. INTERPRETING MODEL EXPLANATIONS

When machine learning models are used as black-boxes
in research, scientific findings remain completely hidden if
models only provide predictions without explanations. In
this study, by explaining the model’s understanding of a
complex condition such as sepsis, we aim to harmonize con-
sistencies and/or contradictions between elements of human
knowledge and that of the model. Here, we interpret our
best model for sepsis severity prediction—an ensemble voting
classifier using Random Forest and Gradient Boosting, by
analyzing the importance assigned to features and model
internals (weights/rules learnt). Further, we attempt to map
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the model’s understanding to published domain knowledge
and literature that is widely used in the field today.

TABLE III
TopP FEATURES AND PERMUTATION FEATURE IMPORTANCES

Feature Importance =+ std

Was Lactate Measured? 0.023
ASOFA 0.025
NSOFA 0.025 0.016
SOFA diff 0.025 0.0077

SBP 0.02145 0.014
PLR 0.021 0.0087
TABLE IV

IMPORTANCES OF SIRS CRITERIA FEATURES

Feature Importance =+ std
Temperature 0.005
Heart rate 0.006 0.004
Respiratory rate 0.009 0.005
White blood cell count 0.015 0.008

Extracting the importance of features in Tree-based models
using mean decrease in impurity measures (Gini, Entropy,
etc.) can give high importance to features that may not be
predictive on unseen data when the model is overfitting.
Instead, we use Permutation Feature Importance [30], [33],
which measures the increase in prediction error after permut-
ing a feature’s values. A feature is “important” if shuffling
its values increases the model error, because the model relied
on the feature for the prediction (and vice versa). From
Table III, we observe that SOFA score (ASOFA & NSOFA)
and the change in SOFA score (SOFA diff) are among the
most important features for the model. Additionally, Systolic
Blood Pressure (SBP), a direct indicator of hypotension
for Septic Shock patients, and Platelet-to-Lymphocyte Ratio
(PLR) [34], were also top features for the model. The above
observations were found to be completely consistent with
the latest decisions and recommendations from the Third
International Consensus Definitions for Sepsis and Septic
Shock (Sepsis-3) [11]. The Consensus also unanimously
considered the current use of 2 or more SIRS criteria [9] to
be unhelpful in determining sepsis incidence. They state the
changes in white blood cell count, temperature, and heart rate
reflect inflammation, but not necessarily a dysregulated, life-
threatening response. They also mention the poor discrimi-
nant and convergent validity of these criteria in determining
sepsis [35], [36]. In congruity, from Table IV, we observe
that SIRS criteria features are relatively less important for
the model’s predictions.

To further explain the model’s understanding and logical
reasoning, we explore model-agnostic local explanations.
Local interpretable model-agnostic explanations (LIME) [37]
generates a new dataset consisting of perturbed samples

Not Severe Sepsis Severe Sepsis

Was Lactate Measured?
0.21
ASOFA = 5.00 Prediction Probability
. sepsis [0.10
SOFA Diff = 1.00 P
B 0oc severe sepsis
PCOZ > 36.20 Septic Shock
0.03
122.0< SBP <= 146.0
0.02
Fig. 2. Explanations for Severe Sepsis Prediction
Not Septic Shock Septic Shock
Was Lactate Measured?
0.10
SBP <=103.00 Prediction Probability
0.07
Sepsis
7.0=<NSOFA<=90
003 Severe Sepsis [[029 ]
Pulse pressure <= 40,0  Septic Shock
0.02
Fig. 3. Explanations for Septic Shock Prediction

for an individual data point (local) and the corresponding
predictions of any black box model. On this new dataset,
LIME trains an interpretable surrogate model (such as deci-
sion tree or lasso), which is weighted by the proximity of
the sampled instances to the instance of interest. We then
extract and interpret the weights of the surrogate model to
explain the black box model. Figures 2 and 3, that show
explanations for predictions, contain a series of features and
their weights that directed the model towards a particular
prediction. Figure 2 shows the explanations for the model
predicting (correctly) a patient’s severity as Severe Sepsis.
We observe that explanations like SOFA Diff > 1.00
are in conformance with consensus defined rules [11], i.e.,
an increase in SOFA of 2 points or more. We also see that
Systolic Blood Pressure (SBP) is in the range [122, 146], in-
dicating an absence of hypotension (SBP < 90 mm Hg), thus
lesser chances of septic shock. On the other hand, Figure 3
shows explanations for the model predicting (correctly) a
patient’s severity as Septic Shock. Here, we observe that the
explanation—-SBP <= 103 indicates the model’s ability to
learn the presence of hypotension in septic shock patients.
Singer et al. [11] also state that septic shock patients can be
clinically identified by a vasopressor requirement to maintain
a mean arterial pressure of 65 mm Hg or greater. This maps
to the model’s understanding that an Arterial Pulse
pressure <= 40 indicates septic shock. A similar anal-
ysis of a model’s assignment of weights to features can be
made to gain insight to comorbidity severity as well.

VI. CONCLUSION

With the analysis and model explanations in the foregoing
Section, we conclude that simple models can learn logical
rules to determine the severity of sepsis as well as the sever-
ity of accompanying comorbodities. These explanations not
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only support conformance of model understanding with the
knowledge of medical experts, but also provide interpretable
assistance to doctors that can aid in early development of
effective treatment plans. In the spirit of reproducible re-
search, we have made available the preprocessed data, code,
models and an interpretability notebook used to produce the
results in this paper— https://interpretsepsis/repository.

[1]

[2]

[3]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

(1]

(12]

[13]

[14]

[15]

[16]

REFERENCES

K. E. Rudd, S. C. Johnson, K. M. Agesa, K. A. Shackelford, D. Tsoi,
D. R. Kievlan, D. V. Colombara, K. S. Ikuta, N. Kissoon, S. Finfer
et al., “Global, regional, and national sepsis incidence and mortality,
1990-2017: analysis for the global burden of disease study,” The
Lancet, vol. 395, no. 10219, pp. 200-211, 2020.

B. Nemetchek, L. English, N. Kissoon, J. M. Ansermino, P. P. Moscho-
vis, J. Kabakyenga, S. Fowler-Kerry, E. Kumbakumba, and M. O.
Wiens, “Paediatric postdischarge mortality in developing countries: a
systematic review,” BMJ open, vol. 8, no. 12, p. €023445, 2018.

R. O’Neill, J. Morales, and M. Jule, “Early goal-directed therapy
(egdt) for severe sepsis/septic shock: which components of treatment
are more difficult to implement in a community-based emergency
department?” The Journal of emergency medicine, vol. 42, no. 5, pp.
503-510, 2012.

G. Kong, K. Lin, and Y. Hu, “Using machine learning methods
to predict in-hospital mortality of sepsis patients in the icu,” BMC
Medical Informatics and Decision Making, vol. 20, no. 1, pp. 1-10,
2020.

S. Nemati, A. Holder, F. Razmi, M. D. Stanley, G. D. Clifford, and
T. G. Buchman, “An interpretable machine learning model for accurate
prediction of sepsis in the icu,” Critical care medicine, vol. 46, no. 4,
p. 547, 2018.

R. Ferrer, A. Artigas, D. Suarez, E. Palencia, M. M. Levy, A. Aren-
zana, X. L. Pérez, and J.-M. Sirvent, “Effectiveness of treatments
for severe sepsis: a prospective, multicenter, observational study,”
American journal of respiratory and critical care medicine, vol. 180,
no. 9, pp. 861-866, 2009.

B. Gyawali, K. Ramakrishna, and A. S. Dhamoon, “Sepsis: The
evolution in definition, pathophysiology, and management,” SAGE
open medicine, vol. 7, p. 2050312119835043, 2019.

J.-L. Vincent, E. O. Martinez, and E. Silva, “Evolving concepts in
sepsis definitions,” Critical Care Nursing Clinics, vol. 23, no. 1, pp.
29-39, 2011.

R. C. Bone, R. A. Balk, F. B. Cerra, R. P. Dellinger, A. M. Fein,
W. A. Knaus, R. M. Schein, and W. J. Sibbald, “Definitions for sepsis
and organ failure and guidelines for the use of innovative therapies in
sepsis,” Chest, vol. 101, no. 6, pp. 1644—1655, 1992.

D. Annane, E. Bellissant, and J.-M. Cavaillon, “Septic shock,” The
Lancet, vol. 365, no. 9453, pp. 63-78, 2005.

M. Singer, C. S. Deutschman, C. W. Seymour, M. Shankar-Hari,
D. Annane, M. Bauer, R. Bellomo, G. R. Bernard, J.-D. Chiche, C. M.
Coopersmith er al., “The third international consensus definitions for
sepsis and septic shock (sepsis-3),” Jama, vol. 315, no. 8, pp. 801-810,
2016.

S. Ghosh, J. Li, L. Cao, and K. Ramamohanarao, “Septic shock
prediction for icu patients via coupled hmm walking on sequential
contrast patterns,” Journal of biomedical informatics, vol. 66, pp. 19—
31, 2017.

K. E. Henry, D. N. Hager, P. J. Pronovost, and S. Saria, “A targeted
real-time early warning score (trewscore) for septic shock,” Science
translational medicine, vol. 7, no. 299, pp. 299ral122-299ral22, 2015.
H. J. Kam and H. Y. Kim, “Learning representations for the early
detection of sepsis with deep neural networks,” Computers in biology
and medicine, vol. 89, pp. 248-255, 2017.

S. B. Asiimwe, A. Abdallah, and R. Ssekitoleko, “A simple prognostic
index based on admission vital signs data among patients with sepsis
in a resource-limited setting,” Critical Care, vol. 19, no. 1, pp. 1-8,
2015.

L. M. Fleuren, T. L. Klausch, C. L. Zwager, L. J. Schoonmade, T. Guo,
L. F. Roggeveen, E. L. Swart, A. R. Girbes, P. Thoral, A. Ercole
et al., “Machine learning for the prediction of sepsis: a systematic
review and meta-analysis of diagnostic test accuracy,” Intensive care
medicine, vol. 46, no. 3, pp. 383-400, 2020.

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

(31]

[32]

[33]

[34]

[35]

[36]

[37]

2179

A. Rhodes, L. E. Evans, W. Alhazzani, M. M. Levy, M. Antonelli,
R. Ferrer, A. Kumar, J. E. Sevransky, C. L. Sprung, M. E. Nunnally
et al., “Surviving sepsis campaign: international guidelines for man-
agement of sepsis and septic shock: 2016,” Intensive care medicine,
vol. 43, no. 3, pp. 304-377, 2017.

V. De Groot, H. Beckerman, G. J. Lankhorst, and L. M. Bouter,
“How to measure comorbidity: a critical review of available methods,”
Journal of clinical epidemiology, vol. 56, no. 3, pp. 221-229, 2003.
S. F. Hall, “A user’s guide to selecting a comorbidity index for clinical
research,” Journal of clinical epidemiology, vol. 59, no. 8, pp. 849—
855, 2006.

R. Yancik, W. Ershler, W. Satariano, W. Hazzard, H. J. Cohen, and
L. Ferrucci, “Report of the national institute on aging task force
on comorbidity,” The Journals of Gerontology Series A: Biological
Sciences and Medical Sciences, vol. 62, no. 3, pp. 275-280, 2007.
D. C. Angus, W. T. Linde-Zwirble, J. Lidicker, G. Clermont, J. Car-
cillo, and M. R. Pinsky, “Epidemiology of severe sepsis in the united
states: analysis of incidence, outcome, and associated costs of care,”
Read Online: Critical Care Medicine— Society of Critical Care
Medicine, vol. 29, no. 7, pp. 1303-1310, 2001.

G. S. Martin, D. M. Mannino, S. Eaton, and M. Moss, “The epidemi-
ology of sepsis in the united states from 1979 through 2000,” New
England Journal of Medicine, vol. 348, no. 16, pp. 1546-1554, 2003.
M. Charlson, T. P. Szatrowski, J. Peterson, and J. Gold, “Validation
of a combined comorbidity index,” Journal of clinical epidemiology,
vol. 47, no. 11, pp. 1245-1251, 1994.

J.-L. Vincent, R. Moreno, J. Takala, S. Willatts, A. De Mendonga,
H. Bruining, C. Reinhart, P. Suter, and L. G. Thijs, “The sofa (sepsis-
related organ failure assessment) score to describe organ dysfunc-
tion/failure,” 1996.

Y.-q. Huang, R. Gou, Y.-s. Diao, Q.-h. Yin, W.-x. Fan, Y.-p. Liang,
Y. Chen, M. Wu, L. Zang, L. Li et al., “Charlson comorbidity index
helps predict the risk of mortality for patients with type 2 diabetic
nephropathy,” Journal of Zhejiang University Science B, vol. 15, no. 1,
pp. 58-66, 2014.

A. Von Eye and C. C. Clogg, Categorical variables in developmental
research: Methods of analysis. Elsevier, 1996.

A. P. Dempster, N. M. Laird, and D. B. Rubin, “Maximum likelihood
from incomplete data via the em algorithm,” Journal of the Royal
Statistical Society: Series B (Methodological), vol. 39, no. 1, pp. 1-
22, 19717.

R. J. Little and D. B. Rubin, Statistical analysis with missing data.
John Wiley & Sons, 2019, vol. 793.

C. Cortes and V. Vapnik, “Support-vector networks,” Machine learn-
ing, vol. 20, no. 3, pp. 273-297, 1995.

L. Breiman, “Random forests,” Machine learning, vol. 45, no. 1, pp.
5-32, 2001.

Y. Freund, R. E. Schapire et al., “Experiments with a new boosting
algorithm,” in icml, vol. 96. Citeseer, 1996, pp. 148-156.

J. H. Friedman, “Stochastic gradient boosting,” Computational statis-
tics & data analysis, vol. 38, no. 4, pp. 367-378, 2002.

A. Fisher, C. Rudin, and F. Dominici, “Model class reliance: Variable
importance measures for any machine learning model class, from the”
rashomon” perspective,” arXiv preprint arXiv:1801.01489, vol. 68,
2018.

E. Can, §. Hamilcikan, and C. Can, “The value of neutrophil to
lymphocyte ratio and platelet to lymphocyte ratio for detecting early-
onset neonatal sepsis,” Journal of pediatric hematology/oncology,
vol. 40, no. 4, pp. 229232, 2018.

M. M. Churpek, F. J. Zadravecz, C. Winslow, M. D. Howell, and
D. P. Edelson, “Incidence and prognostic value of the systemic
inflammatory response syndrome and organ dysfunctions in ward
patients,” American journal of respiratory and critical care medicine,
vol. 192, no. 8, pp. 958-964, 2015.

K.-M. Kaukonen, M. Bailey, D. Pilcher, D. J. Cooper, and R. Bellomo,
“Systemic inflammatory response syndrome criteria in defining severe
sepsis,” New England Journal of Medicine, vol. 372, no. 17, pp. 1629—
1638, 2015.

M. T. Ribeiro, S. Singh, and C. Guestrin, “”’ why should i trust you?”
explaining the predictions of any classifier,” in Proceedings of the 22nd
ACM SIGKDD international conference on knowledge discovery and
data mining, 2016, pp. 1135-1144.



