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Abstract—Arterial compliance is a vital determinant of the
ventriculo-arterial coupling dynamic. Its variation is detri-
mental to cardiovascular functions and associated with heart
diseases. Accordingly, assessment and measurement of arterial
compliance are essential in the diagnosis and treatment of
chronic arterial insufficiency. Recently, experimental and theo-
retical studies have recognized the power of fractional calculus
to perceive viscoelastic blood vessel structure and biomechanical
properties. This paper presents five fractional-order model
representations to describe the dynamic relationship between
the aortic blood pressure input and blood volume. Each
configuration incorporates a fractional-order capacitor element
(FOC) to lump the apparent arterial compliance’s complex and
frequency dependence properties. FOC combines both resistive
and capacitive attributes within a unified component, which
can be controlled through the fractional differentiation order
factor, α. Besides, the equivalent capacitance of FOC is by
its very nature frequency-dependent, compassing the complex
properties using only a few numbers of parameters. The
proposed representations have been compared with generalized
integer-order models of arterial compliance. Both models have
been applied and validated using different aortic pressure and
flow rate data acquired from various species such as humans,
pigs, and dogs. The results have shown that the fractional-
order framework is able to accurately reconstruct the dynamic
of the complex and frequency-dependent apparent compliance
dynamic and reduce the complexity. It seems that this new
paradigm confers a prominent potential to be adopted in clinical
practice and basic cardiovascular mechanics research.

Keywords—Fractional calculus, fractional-order capacitor,
apparent compliance, aortic input impedance.

I. INTRODUCTION

C Ardiovascular diseases (CVDs) are the number one
cause of premature death worldwide. Besides, de-

creased arterial compliance is recognized to be detrimental
to the heart and arterial functions [1]. The variation in
arterial compliance is associated with major forms of CVDs,
mainly hypertension and atherosclerosis [2]. Accordingly,
assessment and evaluation of arterial compliance changes are
crucial in diagnosing and treating hemodynamic disorders.
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Commonly, vascular compliance stands for the ability of the
vessel to store the blood. Functionally, arterial compliance
can be defined as the ratio of an incremental variation in
the blood volume (dV ) due to an incremental variation in
distending pressure (dP ). Mathematically it can be expressed
as: C = dV /dP . Several analytical and experimental studies
focused on modeling arterial compliance [3].

A century ago, with the introduction of the well-known
linear Windkessel representation of the arterial system, the
arterial compliance was assumed to have a single constant
value for the entire cardiac cycle and hence the transfer
function relating the variation of the blood volume to the
blood pressure input changes was considered to be a constant
as well. Accordingly, the arterial compliance was modeled
within the arterial Windkessel model as an ideal capacitor
whose capacitance is constant [4], [5]. However, this assump-
tion was not realistic, and its drawbacks were reflected essen-
tially in the estimation of the hemodynamic. In fact, it does
not lead to the correct evaluation of the true value of arterial
compliance. Besides, by analyzing the transfer function blood
Volume/input pressure, experimental studies have shown that
this relationship is frequency-dependent, and a time delay
between the arterial blood volume and the input blood
pressure coexist. Hence a variation in the arterial compliance
along the cardiac cycle is expected [6]. In order to take into
account this frequency dependency, some research proposals
have promoted a new configuration where they considered
the viscoelastic properties of the arterial vessel model and
modeled the arterial compliance using the so-called Voigt-
cell configuration. This type of arterial model was known
as Viscoelastic Windkessel. Although the viscoelastic Voigt-
cell has resolved some contradictions of the standard elastic
Windkessel, this configuration does present some limitations
as it does not account for the stress-relaxation experiments
[5]. Experimenters have proposed using high-order viscoelas-
tic configurations to overcome this restriction by connecting
many Voigt-cell, for example. This solution might accurately
model the whole arterial compliance and its feature; however,
it is considered a very complex alternative that poses extra
challenges. Indeed, for higher-order models, the number of
parameters to identify is more significant, while the collected
real data is small and insufficient. It is also recognized that
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reduced-order models are desirable for their simplicity and
ease of exploration [7].

In the last decades, non-integer differentiation, the so-
called fractional-order differential calculus, became a popular
tool for characterizing real-world physical systems and com-
plex behaviors from various fields such as biology, control,
and electronics, and economics. The long-memory and spa-
tial dependence phenomena inherent to the fractional-order
systems present unique and attractive peculiarities that raise
exciting opportunities to represent complex phenomena that
represent power-law behavior accurately [8]–[10]. Regarding
cardiovascular system modeling, the power-law behavior has
been proved in the viscoelasticity characterization of an
elastic aorta. The in-vivo and in-vitro experiment have shown
that fractional-order calculus tools are more convenient to
precisely represent the dynamic arterial; the viscoelasticity
properties of the collagenous tissues in the arterial bed; the
arterial blood flow [11], [12]; red blood cell (RBC) membrane
mechanics [13] and the heart valve cusp [12], [14]–[16].
Recently, we adopted fractional-order derivative tools to the
well-known arterial Windkessel paradigm by substituting
the ideal capacitor, which accounts for the total arterial
compliance, with a fractional-order capacitor, [7], [17], [18].
Our preliminary investigation confirmed that the fractional-
order impedance is the right candidate for the accurate
assessment of the aortic input impedance. Moreover, a strong
correlation between the main hemodynamic determinants and
the fractional differentiation order (α) has been proved. [19],
[20]. The fractional order is used to describe the transition
between viscosity and elasticity more accurately.

This paper presents five fractional-order model represen-
tations to describe the dynamic relationship between the
aortic blood pressure input and blood volume. Each con-
figuration incorporates a fractional-order capacitor element
(FOC) to lump the apparent arterial compliance’s complex
and frequency dependence properties. FOC combines both
resistive and capacitive attributes within a unified component,
which can be controlled through the fractional differentiation
order factor, α. Besides, the equivalent capacitance of FOC
is by its very nature frequency-dependent, compassing the
complex properties using only a few numbers of parame-
ters. The proposed representations have been compared with
generalized integer-order models of arterial compliance. Both
models have been applied and validated using different aortic
pressure and flow rate data acquired from various species
such as humans, pigs, and dogs.

II. BACKGROUND

A. Apparent Compliance

The apparent compliance, Capp, refers to the arterial bed’s
capacity to store blood dynamically. Functionally, it corre-
sponds to the transfer function between the blood volume
(V ) and input blood pressure (Pin). In the following, we
present its mathematical derivation:

Based on the conservation of mass, the arterial blood flow
pumped from the heart to the arterial vascular bed (Qin) can
be expressed as:

Qin = Qstored +Qout, (1)

where Qstored is the blood stored in the arterial tree, and
Qout corresponds to the flow out of the arterial system. In
the frequency domain Qout can be expressed as:

Qout(w) =
1

Rapp(ω)
Pin(w). (2)

where ω corresponds to the angular frequency and Rapp is the
apparent arterial resistance [3]. Qstored is defined as the rate
of flow by taking the first derivative of the volume equation
for the time.

Qstored(t) =
dV

dt
=

dV (t)

dPin(t)︸ ︷︷ ︸
Capp

dPin(t)

dt
, (3)

Hence in the frequency domain Qstored can be expressed as:

Qstored = jωPinCapp (4)

Aortic input impedance Zin describes the ability of the
arterial system to hamper the blood flow dynamically. Func-
tionally, Zin is defined as the dynamic relationship, in the
frequency domain, of the arterial blood pressure (Pin) and
blood flow (Qin) at the entrance of the systemic circulatory
system, that is:

Zin(ω) =
Pin(ω)

Qin(ω)
, (5)

Substituting equations (2) and (4) into equation (1) gives:

Qin = jωPinCapp +
1

Rapp(ω)
Pω(w). (6)

Rearranging the above equation yields an expression for Capp
in terms of Zin and Rapp as follow:

Capp =
Rapp − Zin
jωRappZin

(7)

B. Fractional-order capacitor

Fractional-order capacitor is a constant phase element [21].
It is an electrical element that represents a fractional-order
derivative relationship between the current, Q(t), passing
through and the voltage, P (t), across it with respect to time,
t, as follow:

Q(t) = Cα
dα

dtα
P (t), (8)

where Cα is a proportionality constant so-called pseudo-
capacitance, expressed in units of [Farad/second1−α]. The
conventional capacitance, C, in unit of Farad is related to Cα
as C = Cαω

α−1 that is frequency-dependent. The fractional-
order impedance (Zα) is expressed as follow:

Zα(s) =
1

Cαsα
=

1

Cα
ω−α cos(φ)︸ ︷︷ ︸
Zr

−j 1

Cα
ωα sin(φ)︸ ︷︷ ︸
Zi

, (9)
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Fig. 1: Schematic representations of the electrical analogue of the proposed
fractional-order models.

where s corresponds to the Laplace variable and φ denotes
the phase shift given by the formula: φ=απ/2 [rad] or φ=90α
[degree or ◦]. Zr and Zi are the real and imaginary parts of
Zα corresponding to the resistive and capacitive portions,
respectively. From (9), it is apparent that the transition
between resistive and capacitive parts is ensured by α. If
0 ≤ α 6 1, the bounding conditions of α will corresponds
to the discrete conventional elements: the resistor at α = 0
and the ideal capacitor at α = 1). As α goes to 0, (Zi)
convergence to 0, and thus the fractional element looks like
that a pure resistor, whereas as α goes to 1, (Zr) converges to
0 and hence, the fractional element serves as a pure capacitor.
Bearing these properties in mind, it is clear that the fractional
order α parameter allows extra versatility.

III. MODELS

As shown in the previous section, the FOC offers extra
flexibility via its fractional differentiation order α, and it

permits the smooth transition and control between the re-
sistive and capacitive parts, which might be investigated to
model the arterial system properties. By rewriting (3) in the
fractional-order domain as:

Qstored(t) =
dαV

dtα
=

dαV (t)

dαPin(t)︸ ︷︷ ︸
Cαapp

dαPin(t)

dtα
, (10)

we found that FOC can be a great candidate to present the
complex and frequency-dependent dynamic of the arterial
compliance. In fact, based on (10) the pseudo compliance,
Cαapp , should be expressed in the unit of [l/mmHg .sec1−α]
that makes, by its very nature, the conventional compliance
(CC), in the unit of [l/mmHg], frequency-dependent as:

CC = Cαapp(jω)α−1. (11)

Hence FOC has a physical foundation in representing the
complex and frequency dependence of the apparent compli-
ance. Besides, based on the value of α, the real and the
imaginary parts of the resultant FOC’s impedance can have
different levels, so by analogy, α can control dissipative
and storage mechanisms, and so the viscous and elastic part
of the arterial wall. It is worth noting that the equivalent
analog circuit of FOC can be viewed as infinity Voigt-
cells connected in parallel [22], [23]. Hence, FOC might
lead to a minimal representation of the arterial network’s
mechanical properties using only two parameters (α and
Cα). In the following, we present the five fractional-order
representations of arterial compliance. The analog structures
of the proposed models are shown in Fig. 1. The fractional-
order representations have been compared with generalized
integer-order models of arterial compliance that are presented
as well.

A. Fractional-order Models

1) Model A: It comprises only one single FOC. As
detailed in the previous sections, the apparent compliance
expressed in unit of [l/mmHg] can be written as:

CAc = Cα(jω)α−1. (12)

2) Model B: It comprises an ideal capacitor (Cstat) ac-
counting for the static compliance and FOC connected in
series. The apparent compliance expressed in the unit of
[l/mmHg] can be written as:

CBc =
CαCstat(jω)α

Cα(jω)α + Cstat(jω)
. (13)

3) Model C: It comprises a resistor (R) and FOC con-
nected in series. The apparent compliance expressed in the
unit of [l/mmHg] can be written as:

CCc =
Cα(jω)α−1

1 +RCα(jω)
. (14)
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Fig. 2: In-vivo human aging data sets digitized from ( Nichols et al., [24]).
It presents the blood flow rate and pressure waveforms at different ages,
namely 28, 52, and 68 years.

4) Model D: It comprises a resistor (R), an ideal capacitor
(Cstat) and FOC connected in series. The apparent compli-
ance expressed in unit of [l/mmHg] can be written as:

CDc =
CstatCα(jω)α

Cstat(jω) + Cα(jω)α +RCαCstat(jω)α+1
. (15)

5) Model E: It comprises a resistor (R1) in parallel to a
FOC and a resistor (R2) connected in series. The apparent
compliance expressed in unit of [l/mmHg] can be written
as:

CEc =
1 + (R1 +R2)Cα(jω)α−1

R1(1 +R2Cα(jω)α)
. (16)

B. Integer-order Models
1) Model F: This model correspond to the general appar-

ent compliance-based model for viscoelastic material [25]
which is expressed as:

CFc = Cstat

∏N
n=1 an((jω) + bn)∏N
n=1 bn((jω) + an)

, (17)

where an and bn are imperial constants that can be convenient
to fit any particular case. Cstat denoting the static compliance
for the vessel. Goedhard et. all showed that this model could
fit an experimental data with N=4. Hence in our comparison
we choose N=4.

2) Model G: : It corresponds to the Voigt-cell model that
consists of an ideal capacitor, (Cstat) accounting for the static
compliance in series to a resistor (Rd), accounting for viscous
losses.

CGc = Cstat
1

1 + (jω)RdCstat
. (18)

IV. MATERIALS AND METHOD

A. In-vivo human-aging and animal datasets
In order to validate the proposed approach, in this study,

we use real data for both human-aging and animal subjects.

Fig. 3: In-vivo animal (Pigs and Dogs) data sets digitized from (Segers et
al., [26]).

The in-vivo human data was extracted and digitized from
aging studies ( Nichols et al., [24]). It consists of measured
aortic blood flow rate (Qa) and aortic blood pressure (Pa)
at different ages, namely 28, 52, and 68 years. The cardiac
beating period for all three subjects is T = 0.95 Sec. In
addition, to further compare and check the efficiency of the
proposed models, we utilized animal (pigs and dogs) data
extracted and digitized from (Segers et al., [26]).The cardiac
beating period for the dog case is T = 0.46 Sec, and for the
pig subject is T = 0.52 Sec. Fig.2 and Fig.3 show the blood
flow and pressure signals for each subject that we have used.

B. Parameters fitting of the models

The parameters of the proposed fractional-order
representations of the apparent arterial compliance
along with the integer ones were estimated by a non-
linear least square minimization routine, making use
of the well-known MATLAB− R2020b, function
fmincon. The parameters to estimate for each model’s
representation CModel

c are refereed as ΘModel where
Model = {(A), (B), (C), (D), (E), (F ), (G)} corresponds
to the index of the model’s representation: ΘModel =
{Θ(A) = {CαA ;αA}, Θ(B) = {CstatB ;CαB ;αB},
Θ(C) = {RC ;CαC ;αC}, Θ(D) = {RD;CstatD ;CαD ;αD},
Θ(E) = {R1E ;R2E ;CαE ;αE}, Θ(F ) =
{CstatF ; ai; bi; i = 1, 2, 3, 4}, Θ(G) = {Rd;Cstat} }
The steps used to obtain the optimal estimates are outlined
in Algorithm 1.

C. Statistical Analysis

To examine and compare the ability of the proposed
models in reproducing the real apparent arterial compliance,
we evaluate the RMSE (step 8 in Algorithm 1). In addition,
because the model representations have a different number
of parameter, to perform a fair comparison, along with
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Algorithm 1 Parameter calibration of the models

1: Load the datasets of the aortic blood pressure (Pin) and
flow rate (Q)

2: Evaluate the Fast Fourier Transform (FFT) of both P and
Q

3: Select the frequency range (Hz) f ∈ [0 13]
4: Calculate the aortic input impedance Zin

. Using equation (5)
5: Calculate the in-silico apparent compliance Capp

. Using equation (7)
6: Select the model to fit with the data
7: Include and Initialize the parameter to estimate Θ

8:

RMSE =

√√√√√∑Ns

i=1

([
Re−R̂e

max(Re)

]2
+
[

Im− ˆIm
max(Im)

]2)
Ns

Θ̂ = arg min
Θ

RMSE

% Where Ns denoting the number of excited frequency
points, Re and Im denoting the real and imaginary parts
of the real Capp, and Im, evaluated in step (5), and
R̂e and ˆIm designate the real and imaginary parts of
the model of CModel

C (Θ), respectively. θ̂ denotes the
estimates that minimize RMSE

the RMSE, we evaluate the Bayesian Information Crite-
rion (BIC) and the corrected Akaike Information Criterion
(AICC) that are defined as follows:


BIC = −2 · ln(RMSE) + P · ln(Ns)

AICC = −2 · ln(RMSE) +
2 · P ·Ns
Ns − P − 1

,

(19)

where P is the number of parameters.

V. RESULTS & DISCUSSION

The values of the goodness of fit criterion RMSE as well
as the calculated {BIC, and AICc}, after fitting the human
and animal dataset to the proposed fractional-order models
and the standard ones, are presented in TABLE I, TABLE II
and TABLE III, respectively. Based on these results, it is clear
that the fractional-order model representations grant an ac-
ceptable reproducing of the real arterial apparent compliance
with a minimum number of parameters. The fractional-order
Model (C) and Model (E) present the best RMSE comparing
to the other fractional-order models. The comparison between
the proposed fractional-order models and the integer models
Model (F) and Model (G) shows that as the models differ in
terms of performance, there is a trade-off between the number
of parameters per representation (complexity) and accuracy.
In fact, complicated configurations offer better RMSE at the
cost of the complexity. In order to take into account this
compromise, the BIC and AIC criteria have been evaluated.
Accordingly, Model (A) and Model (B) present the minimum
values. Overall, using the fractional-order element enhances
the accuracy of the arterial compliance and reduces the com-
plexity. For example, approximately the same performances
are obtained using both Model (C) and Model (F). However,
in the representation-based Model (C), only three parameters
have been used rather than nine parameters in Model (F).

TABLE IV presents the parameter estimates of the pro-
posed fractional-order models for each human and animal
subject. Using Model (A) and Model (B), for all the subjects,
the fractional-order, α, is less than 1. These results prove
that the fractional-order behavior of the apparent compliance.
In fact, in this estimation, for the parameter α, we have
only constrained the lower bound to be zero; however,
for the upper bound, it was unconstrained. Therefore, this
effect implies that the vascular system presents a viscoelastic
behavior, not a purely elastic one. Indeed, the fact that α 6= 1
indicates that the fractional-order element comprises both
resistance and capacitance parts, as demonstrated mathemati-
cally in Eq. (9). The contributions from both the resistive part
and the capacitive one within the fractional-order capacitor
are regulated by the fractional power, α, enabling a more
flexible physiological description. As the fractional power

TABLE I: RMSE calculated based on the developed fractional-order representation and standard ones for each human-aging and animal subject.
Model (A) Model (B) Model (C) Model (D) Model (E) Model (F) Model (G)

Human
(aging)

68-yr 1.64 1.63 1.51 1.54 1.42 1.16 1.55
52-yr 1.4 1.38 1.16 1.18 1.1 1.07 1.21
28-yr 5.44 5.29 2.85 3.96 2.36 2.85 4.31

Animal
(healthy)

Pig 1.18 1.14 0.49 0.69 0.45 1.15 0.8
Dog 20.27 20.12 16.83 18.09 15.22 10.51 18.47

TABLE II: BIC calculated based on the developed fractional-order representation and standard ones for each human-aging and animal subject.
Model (A) Model (B) Model (C) Model (D) Model (E) Model (F) Model (G)

Human
(aging)

68-yr 4.14 4.15 6.87 6.84 9.56 22.79 4.25
52-yr 4.45 4.49 7.4 7.36 10.06 22.95 4.74
28-yr 1.74 1.8 5.6 4.94 8.54 20.99 2.21

Animal
(healthy)

Pig 3.83 3.9 7.68 6.97 9.9 18.44 4.6
Dog -1.86 -1.84 0.59 0.45 2.87 14.01 -1.67
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TABLE III: AICC calculated based on the developed fractional-order representation and standard ones for each human-aging and animal subject.
Model (A) Model (B) Model (C) Model (D) Model (E) Model (F) Model (G)

Human
(aging)

68-yr 4.34 4.35 8.18 8.14 13.02 107.7 4.45
52-yr 4.65 4.7 8.7 8.66 13.52 107.87 4.95
28-yr 1.95 2 6.9 6.25 12 105.9 2.41

Animal
(healthy)

Pig 6.67 6.74 15.44 14.73 29.58 -42.28 7.44
Dog 0.98 1 8.35 8.21 22.55 -46.7 1.17

TABLE IV: Parameter estimates of the fractional-order models for each human-aging and animal subject.
Model (A) Model (B) Model (C) Model (D) Model (E)

Age Heart rate CαA αA CstatB ,CαB αB RC CαC αC RD CstatD ,CαD αD R1E R2E CαE αE

Human
(aging)

68-yr 2.93 0.2 3.45 0.18 0.14 0.44 1.36 0.12 1.27 1.43 1.8 320 4.41e-5 1.49
52-yr 3.85 0.34 5.14 0.27 0.08 0.85 1.29 0.07 2.1 1.43 0.88 179.42 2.37e-4 1.25
28-yr 7.88 0.35 10.65 0.27 0.04 0.92 1.63 0.04 4.36 1.47 0.43 57.17 5.47e-4 1.39

Animal
(healthy)

Pig 1.72 0.57 2.59 0.49 0.09 0.25 1.38 0.07 0.87 1.42 2.6 0.24 0.06 1.36
Dog 3.07 0.28 3.65 0.25 0.12 0.13 1.61 0.1 0.98 1.38 2 728.44 1.94e-5 1.38

increases to 1, the capacitance part dominates and, hence the
arterial system behaves like a pure elastic system, and as α
approaches to 0, the resistive part increases, and consequently
the arterial system acts like a pure viscous system.
By observing the values of the fractional-order differentiation
of the Model (C) Model (D) and Model (E), it is clear
that for all the subjects, this parameter is higher than 1.
Functionally, as α exceeds 1, the real part of the fractional-
order capacitor impedance, Zr, becomes negative, and hence
it has the characteristic of a negative resistor affording
power. Having a negative resistance in these models appears
as compensation for the added static resistance in those
representations. It is worth mentioning that the interest of
constant resistor and/or capacitor in these fractional-order
models is to account for the static viscosity and/or elasticity,
respectively, while the fractional-order capacitor represents
the ability of the arterial vessel to store blood dynamically.
For ease of visualization, we present in Fig. 4 and Fig.
5 the fractional differentiation order estimates, α, of each
fractional-order model for the human and animal subject,
respectively. From Fig. 4, it is clear that αA and αB increase
as the age decreases. This result is in coherence with what has
been demonstrated in several human-aging studies. In fact, it
is well recognized that the arterial vessel becomes stiffer with
age. On the other hand, as we explained before, when α goes
to 0, the resistive part increases within the fractional-order
element, and the system behaves as a viscous element. For
the other models based {αC , αD, and αE} where their values

Fig. 4: Estimated fractional differentiation order α using fractional-order
models {Model (A), Model (B), Model (C), Model (D), Model (E)} for
human-aging.

exceed 1, we can notice that from 68 years old subject to 52
years old one, the values of α decrease; however, the 28 years
old subject presents the highest value. In this case, more real
data are needed to affirm such conclusion and correlation
between the evolution of the fractional differentiation order
and age. In Fig. 5, αA and αB of the dog are less than the
ones of the pig. By checking the blood pressure waveform
of these two animals in Fig. 3, it is clear that the pig’s
systolic and diastolic blood pressure values are larger than the
dog’s ones. Accordingly, the results can be interpreted, as the
increase of the hemodynamic values might be a consequence
of increased vessel stiffness, leading to a decrease in α. For
{αC , which exceeds 1, we notice that αC of the pig is less
than the dog’s one, which is consistent with the previous
results. However, {αD and αE} are approximately equal for
both animals. The discussed results show the inherent benefits
of using fractional-order elements in describing and char-
acterizing the apparent arterial compliance. Fractional-order
modeling offers an acceptable accuracy with a minimum
number of parameters. The analysis of the variation of the
fractional differentiation order in human-aging and animals
points out the potential of this parameter to be adopted as
a surrogate measure of the arterial stiffness or marker of
cardiovascular diseases. The fractional-order might be used to
describe the transition between viscosity and elasticity more
accurately. Future clinical and experimental validations are
required to prove the concept within a wide spectrum of
normal and pathological cardiovascular conditions.

Fig. 5: Estimated fractional differentiation order using fractional-order
models {Model (A), Model (B), Model (C), Model (D), Model (E)} for
animals (Pigs and Dogs) ones.
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VI. CONCLUSION

Indices and surrogate measurements of arterial compli-
ance present a non-invasive assessment of the vasculature’s
health and can provide appropriate knowledge about an
individual’s future risk of morbidity and mortality. The
appearance of fractional-order behavior in the arterial system
has been identified by many experimental studies of the
viscoelasticity properties of the collagenous tissues in the
arterial bed; the analyzes of the arterial blood flow and red
blood cell membrane mechanics; and the characterizing the
heart valve cusp. This paper introduced a fractional-order
modeling approach to assess apparent arterial compliance.
The models incorporate fractional-order capacitors and ideal
resistors and capacitors to display the dynamic relationship
between the blood volume and aortic input pressure. The
majority of proposed parametric models present reasonable
fit performance with in-vivo human and animal data. The
results show that fractional-order model structures conve-
niently capture the capacity of the arterial system to store
the blood. The fractional-order-based approach of arterial
compliance has a great potential to provide a new alternative
in assessing arterial stiffness. Future investigations will be
directed toward integrating these models within a complete
lumped-parameter model for the systemic circulation and
study the effects of certain cardiovascular pathologies upon
changes in the dynamic arterial compliance represented by
the fractional-order capacitor. We provide a publicly avail-
able Matlab code used for the numerical implementation
and models calibration in this study. The pre-processed
data investigated in this study is also available along
with the statistical analysis tools. The algorithms and data
are available at https://github.com/EMANG-KAUST/Human-
and-animal-Fractional-modeling-of-vascular-compliance.
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