
  

 

Abstract—Mechanical ventilation is necessary to maintain 

patients’ life in intensive care units. However, too early or too 

late extubation may injure the muscles or lead to respiratory 

failure. Therefore, the spontaneous breathing trial (SBT) is 

applied for testing whether the patients can spontaneously 

breathe or not. However, previous evidence still reported 

15%~20% of the rate of extubation fail. The monitor only 

considers the ventilation variables during SBT. Therefore, this 

study measures the asynchronization between thoracic and 

abdomen wall movement (TWM and AWM) by using 

instantaneous phase difference method (IPD) during SBT for 

120 minutes. The respiratory inductive plethysmography were 

used for TWM and AWM measurement. The preliminary result 

recruited 31 signals for further analysis. The result showed that 

in successful extubation group can be classified into two groups, 

IPD increase group, and IPD decrease group; but in extubation 

fail group, the IPD value only increase. Therefore, the IPD 

decrease group can almost perfectly be discriminated with 

extubation fail group, especially after 70 minutes (Area under 

curve of operating characteristic curve was 1).  These results 

showed IPD is an important key factor to find whether the 

patient is suitable for extubation or not. These finding suggest 

that the asynchronization between TWM and AWM should be 

considered as a predictor of extubation outcome. In future work, 

we plan to recruit 150 subjects to validate the result of this 

preliminary result. In addition, advanced machine learning 

method is considered to apply for building effective models to 

discriminate the IPD increase group and extubation fail group. 

 
Clinical Relevance— The finding of this study is that the 

patients whose average IPD of 95 to 100 minutes was smaller 

than average IPD of first 5 minutes of SBT could be 100% 

successful extubation.  In addition, ability of discrimination of  

average IPD after 70 minutes presents AUC 1. 

I. INTRODUCTION 

To save critically ill patients who cannot breathe by 
themselves in intensive care units, mechanical ventilation is 
necessary. For clinical, the timing of extubation is an important 
issue. The respiratory failure may occur if too early to remove 
the artificial airway support. However, prolonged mechanical 
ventilation also results in diaphragmatic or lung function 
impairment [1–3]. The previous evidence reported that 
approximately 15% to 20% of patients would occur respiratory 
failure after extubation and need reintubation. Reintubation 
would increase the mortality risk in critically ill patients [4]. In 
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general, most of extubation timing were judged by the 
experience of clinicians. Some factors also used for extubation 
including the rapid shallow breathing index (RSBI) and 
maximal inspiratory pressure (Pimax) [5–8]. Both of these two 
factors are widely used as predictors for predicting the 
extubation outcome. Nevertheless, only depend on the value 
of these two factors still cannot avoid extubation failure.  

In addition, the spontaneous breathing trial (SBT) is widely 
applied to test whether the continued mechanical ventilation is 
necessary for intubated patients or not. The variables measured 
during SBT are possibly related to the extubation outcome [9, 
10]. The indication of tidal volume or breathing rate are 
common to check whether the patients can breathing by 
themselves or not. However, Most of clinical variables only 
consider the ventilation parameters. The respiratory muscles 
were an important part of breathing but less consider in clinical 
extubation judgments. Therefore, the wall movement of 
thoracic (TWM) and abdomen (AWM) were measured during 
SBT in this study. 

To analysis the thoracoabdominal movement, 
asynchronization between TWM and AWM is an important 
indicator. Lissajous figure analysis is one of method for 
measure the asynchronization between TWM and AWM [11]. 
However, the time resolution of Lissajous figure analysis is 
limited (only one value per breathing). Therefore, Chen 
proposed a novel method named instantaneous phase 
difference (IPD) for TWM and AWM asynchronization 
measurement [12]. IPD combined the main decomposition 
method of Hilbert-Huang transform (HHT) and normalization 
direct quadrature (NDQ) method to meet the condition of 
Bedrosian’s theorem and Nuttall’s theorem for meaningful 
instantaneous phase calculation [13]. Therefore, the IPD of the 
intubated patients during SBT were calculated in this study to 
compare the successful extubation group with the extubation 
failure group. 

II. MARTIALS AND METHOD 

A. Experiment and subjects 

The experiment were carried out in Kaohsiung Medical 
University Hospital, Kaohsiung, Taiwan. The project plan to 
recruit 150 patients. The 35 subjects were recruited to date for 
preliminary result. However, because of signal distortion, 4 
subjects were excluded. There are several methods for SBT. 
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Some studies showed that the pressure support method is more 
effective than T-tube method [14, 15]. Therefore, a pressure 
support of 6cmH2O were applied in this study. The patients 
were asked to do SBT and extubation when all parameters of 
“Weaning protocol of Kaohsiung Medical University Hospital 
intensive care units” (Fig. 1) met the criteria. The duration of 
SBT in this study was 120 minutes. The respiratory inductive 
plethysmography (RIP, RIPmate Inductance Belt Abdomen 
Kit, Adult, Alice 5, Ambu Inc., Denmark) were used for TWM 
and AWM measurement during whole SBT. A DAQCard (NI 
Corp., Austin, USA) with a sampling rate of 128 Hz was used 
to acquire signals. Only first 100 minutes of signal were used 
for further analysis. Patients who experienced respiratory 
failure or died within 48 hours after extubation were defined 
as the extubation failure group, and those who did not were 
defined as successful extubation group. In addition, the basic 
information were also acquired from medical record which 
including sex, age, point of Acute Physiology And Chronic 
Health Evaluation II (APACHE II), height, body weight (BW), 
ideal BW (IBW), Glasgow coma scale (GCS) when enter ICU, 
GCS before doing SBT, endotracheal tube diameter, systolic 
blood pressure (SBP) before SBT, diastolic blood pressure 
(DBP) before SBT, heart rate before SBT (HR), oxygen 
saturation (SpO2) before doing SBT, maximal inspiratory 
pressure (Pimax) and leak of cuff of endotracheal tub, . The 
experiment was approved by the Institutional Review Board of 
Kaohsiung Medical University Chung-Ho Memorial Hospital 
(KUMHIRB-F(1)-20200033). 

 

Figure 1.  Weaning protocol of Kaohsiung Medical University Hospital 

intensive care units. 

B. Signal processing 

Firstly, the lowpass filter of 0.5 Hz were applied on RIP 
signal to eliminate the noise. The IPD procedure was described 
following. 

1) Empirical mode decomposition (EMD) 
The EMD is a main decomposition method of HHT [16]. 

The main purpose of EMD is to decompose the signal into 
intrinsic mode functions (IMF), which the average envelope is 
approximate to 0 at any point and number of local maximum 
and local minimum must be equal or differ most by 1 to the 
number of zero-crossing. The main loop procedure called 
sifting process of EMD was described in following: 

 Find the local maximum and minimum of input signal. 

 Produce the upper envelope by local maximum and 
lower envelope by local minimum by using cubic 
spline interpolation. 

 Calculate the mean envelope of upper and lower 
envelopes. 

 Subtract the mean by input signal to get output signal. 

 Check the output signal is IMF or not. If output signal 
is not an IMF, replace the input signal by output signal 
to redo this loop; otherwise, output the output signal 
as an IMF. 

After output an IMF, subtract this IMF by the first one input 
signal to get the residual signal. Using the residual signal to be 
input signal to redo the sifting process until the residual signal 
is monotone. Therefore, the relationship of original input 
signal, IMFs, and residual is  

                            𝑆(𝑡) = ∑ 𝐼𝑀𝐹(𝑡) + 𝑟(𝑡)                       (1) 

where S(t) is the raw RIP signal and r(t) is the residual. 

However, the mode mixing problem, which means that the 
different frequency band components are possibly 
decomposed into one IMF, may occur in EMD. For solving the 
problem, the complete ensemble EMD (CEEMD) is one of the 
effectively method [17]. An white noise be added into and be 
subtracted by the raw signal before doing sifting process. 

[
𝑆𝑝(𝑡)

𝑆𝑛(𝑡)
] = [

1 1
1 −1

] [
𝑆(𝑡)
𝑁(𝑡)

]                        (2) 

where N(t) is the Gaussian white noise, Sp(t) and Sn(t) denote 
the 𝑆(𝑡) adding and subtracting N(t), respectively. 

For reducing the influence of Gaussian white noise, redo 
many times of CEEMD and average all corresponding IMFs 
to get ensemble IMFs. In this study, 50 times was set. 

2) Main component selection 
After the CEEMD, many IMFs were extracted. To 

determine which one is the main component, the energy 
density method was applied in this study. The energy of each 
IMF is calculated by 

𝐸𝑛 = ∑ 𝐼𝑀𝐹𝑛
2(𝑡)𝑡=0                           (3) 

where En is the energy of nth IMF, IMFn(t). The main 
component was determined by the max energy one of IMF 
between IMF4 to IMF6. 

3) Normalized direct quadrature (NDQ) 
The NDQ was applied for instantaneous phase calculation. 

The main component of IMFs can be served as cosine function. 
Therefore, the sine function and tangent function can be 
calculated by  

 

753



  

𝑠𝑖𝑛𝜃(𝑡) = √1 − 𝑐𝑜𝑠2𝜃(𝑡)                          (4) 

𝑡𝑎𝑛𝜃(𝑡) =
𝑠𝑖𝑛𝜃(𝑡)

𝑐𝑜𝑠𝜃(𝑡)
                              (5) 

Therefore, the phase can be calculated by arctangent. The 
unwrapped phase was produced for IPD calculation. 

4) Instantaneous phase difference (IPD) 

After the instantaneous phase of RIP of TWM (θTWM (t)) 

and RIP of AWM (θAWM (t)) calculated, the IPD can be 

calculated by  

𝐼𝑃𝐷(𝑡) = 𝜃𝑇𝑊𝑀(𝑡) − 𝜃𝐴𝑊𝑀(𝑡)                (6) 

Because the resolution of IPD time series is too high, 
calculate the trimmed mean (25%) of IPD in a window without 
overlapping. The window size was set to 5 minutes. Therefore, 
total 20 values per subject can be indication (window 0 
presents 0 to 5 minutes, window 1 presents 5 to 10 minutes, 
and so on.).  

C. Statistical analysis 

The basic information result would be showed in 
mean ± standard deviation. The IPD result of mean and 
standard deviation would be showed by error bar plot per 
window. Because of small size and unequal sample sizes 
between two groups, the Mann-Whitney U test was applied in 
this study for independent variable distribution difference 
analysis in two-tailed tests. A p-value of <.01 indicated a 
significant difference. The result would be showed by p-value. 
The receiver operating characteristic curve (ROC) was applied 
to test the discriminatory ability of the IPD in each window, 
with results expressed as the area under curve (AUC) value. In 
addition, for combining total 20 values of IPD during SBT, the 
multivariable logistic regression (MLR) was applied to create 
model. The calibration accuracy, AUC and F-score of model 
were reported. Moreover, the leave-one-out validation (LOO) 
was also applied to test the model. The result of LOO was 
reported as accuracy and Cohen’s k. All analyses were 
conducted and signal processing was coded by using the 
LabVIEW platform (National Instruments Corporation, 
Austin, TX, USA). 

III. RESULT AND DISCUSSION 

The basic characteristics of 31 subjects were showed in 
Table I. After extubation, total of 7 subjects were extubation 
fail. Only GCS before SBT had lower p-value (0.013) between 
successful extubation group and extubation fail group. 

 For IPD result, the Fig. 2 showed the error bar plot, p-
value and AUC of each window. The minimum p-value and 
maximum AUC are about 0.1 and 0.7, respectively (window 9 
and window 13). However, after our observation, the 
successful extubation group can be discriminated into IPD 
increase group and IPD decrease group. If the average IPD in 
last window (95 to 100 minutes) larger than the one in first 
window (0 to 5 minutes), defined as IPD increase group; 
otherwise, defined as IPD decrease group. After this grouping, 
15 subjects were classified into IPD increase group, 9 subjects 
were classified into IPD decrease group. The Fig. 3 showed 
the result among three groups (extubation fail group, IPD 
increase group, and IPD decrease group). The IPD trend of all 
subjects in extubation fail group were increase. There are 
significant difference between extubation fail group and IPD 
decrease group in all windows. The AUC of IPD between 

these two groups reached 1 after window 13 (65 to 70 minutes), 
which means that the IPD can discriminate two group perfectly 
after 65 minutes of SBT. However, no significant difference 
between IPD increase group and extubation fail group. The 
minimum p-value and maximum AUC are only 0.3 and 0.6, 
respectively. 

 

Figure 2.  The error bar plot (first row), p-value (second row), and AUC 

(third row) of successful extibation group (black, square point) and 
extubation fail group (red, circle point). 

 

Figure 3.  The error bar plot (first row) of three group (extubation fail 
group: red, circle plot; IPD increace group: black, solid square point; IPD 

decrease group: blue, hollow square point); p-value (second row) and AUC 

(third row) compared extubation fail group with IPD increase group (black, 
hollow square point) and IPD decrease group (red, solid square point). 

 

 

 

 

754



  

For MLR model, the Table II showed the result between 
two groups (model 1: successful extubation group vs. 
extubation fail group; model 2: IPD increase group vs. 
extubation fail group; model 3: IPD decrease group vs. 
extubation fail group). In model 1, though the calibration 
accuracy and AUC were 0.77 and 0.59, the F-score and 
Cohen’s k were only 0.4 and 0, which means the model may 
be affected by unbalance sample size and over fitting. In model 
2, the calibration accuracy and AUC were only 0.68 and 0.59, 
respectively. The F-score and Cohen’s k were also poor. The 
discrimination ability of model 1 and model 2 were weak. 
However, in model 3, each assessment parameter reported 
almost best value (calibration accuracy 100%, AUC was 1, F-
score was 1, LOO accuracy was 0.94, Cohen’s k was 0.88). 
The Fig. 4 showed the mean, max and min value of each 
coefficient of model 3 of all LOO models. B0 means the 
constant, B1 means the IPD value of first window, and so on. 
It can found that the window in later SBT was more important 
than early SBT. 

Fewer studies were applied RIP for the research of 
extubation outcome. To our best knowledge, the present study 
is the first one to apply IPD technique to measure the 
asynchronization between TWM and AWM of intubation 
patients during SBT. Some studies applied IPD for abdominal 
breathing assessment [12], classify the symptom of pulmonary 
disease of patients [18]. Some studies also applied RIP for tidal 
volume estimation [18–20]. A study compared the tidal 
volume estimated by RIP of postextubation with the one of 
preextubation [21].  However, their impacts were not related 
to discriminate the successful extubation and extubation fail. 
In our finding, the IPD decrease group presented 100% 
successful extubation. For the IPD value lower than 0 means 
that the speed of AWM is higher than TWM. For someone 
whose breathing can be dominated by abdomen may have 
more powerful ability to do spontaneous breathing after 
extubation. For IPD increase group, maybe they also had 
ability to breathing dominated by abdomen, but they did not 
do it. However, it still need more research to confirm.   

TABLE II.  THE MLR MODEL  

Compared group 
Calibration accuracy 

(range) 

Mean AUC of model 

(range) 

Mean F-score of model 

(range) 

LOO accuracy 

(Cohen’s k) 

model 1 0.77 (0.77-0.80) 0.59 (0.52-0.67) 0.40 (0.32-0.48) 0.77 (0) 

model 2 0.68 (0.52-0.71) 0.59 (0.52-0.68) 0.46 (0.40-0.59) 0.55 (-0.13) 

model 3 1.00 (1.00-1.00) 1.00 (1.00-1.00) 1.00 (1.00-1.00) 0.94 (0.88) 

 

TABLE I.  BASIC INFORMATION OF SUBJECTS 

Clinical Characteristics successful extubation (24) extubation fail (7) p-value AUC 

Sex (n, male/female) 18/6 3/4 N/A N/A 

Age (year) 66.57±21.12 63.63±9.48 0.201 0.664 

APACHEII (point) 22.57±9.74 20.79±8.63 0.689 0.554 

Height (cm) 158.71±7.50 163.875±7.46 0.089 0.717 

BW (kg) 63.54±14.36 61.37±18.31 0.542 0.580 

IBW (kg) 56.03±5.64 59.18±5.40 0.177 0.673 

GCS enter ICU (point) 7±3 3.54±1.25 0.013 0.815 

GCS before SBT (point) 10.14±1.21 9.75±1.48 0.603 0.568 

Endo_size (mm) 7.29±0.27 7.42±0.19 0.308 0.631 

SBP_before_SBT (mmHg) 128.29±31.98 150.67±35.89 0.15 0.685 

DBP_before_SBT (mmHg) 71.86±22.44 69.17±13.45 0.757 0.542 

HR_before_SBT (bpn) 93.57±11.98 88.25±15.01 0.332 0.625 

SpO2_before_SBT (%) 96.29±3.04 97.83±1.93 0.238 0.652 

Pimax (cmH2O) 32±5.57 32.92±9.07 0.96 0.509 

cuff_leak (ml) 245.71±157.15 245.42±113.71 0.726 0.548 
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Figure 4.  The max-min error bar of the coefficient of model 3 of all LOO 

model.  

Though this research plan to recruit 150 subjects, in this 
preliminary result still can find the trend of these 3 groups: the 
IPD must increase in extubation fail group; the IPD decrease 
present the patient is suitable to extubation. In further work, to 
discriminate the IPD increase group and extubation fail group 
is the main purpose. In this study, we had tried to build MLR 
model by using trimmed mean value of IPD in 20 windows. In 
addition to trimmed mean, other statistic variables like 
standard deviation also can be calculated for MLR model. 
Moreover, some studies applied machine learning method to 
build model for extubation outcome prediction [22–24]. To 
test other machine learning method by using IPD is also a 
further work.  

IV. CONCLUSION 

The preliminary result in this study showed the 

asynchronous phase of thoracoabdominal movement via IPD 

method in intubation patients may an important feature for the 

extubation outcome prediction. A decreased IPD value after 

SBT presents the suitable condition for extubation. Moreover, 

the result also showed that the duration of SBT should larger 

than 70 minutes is better to judge whether a patient is suitable 

for extubation or not. Test other statistic variables of IPD and 

applying other machine learning methods to discriminate the 

IPD increase group and extubation fail group is the main 

purpose of future work. 
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