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Abstract— Recent advances in deep learning have enabled the
development of automated frameworks for analysing medical
images and signals, including analysis of cervical cancer. Many
previous works focus on the analysis of isolated cervical cells,
or do not offer explainable methods to explore and understand
how the proposed models reach their classification decisions on
multi-cell images which contain multiple cells. Here, we evaluate
various state-of-the-art deep learning models and attention-
based frameworks to classify multiple cervical cells. Our aim is
to provide interpretable deep learning models by comparing
their explainability through the gradients visualization. We
demonstrate the importance of using images that contain
multiple cells over using isolated single-cell images. We show
the effectiveness of the residual channel attention model for
extracting important features from a group of cells, and
demonstrate this model’s efficiency for multiple cervical cells
classification. This work highlights the benefits of attention
networks to exploit relations and distributions within multi-cell
images for cervical cancer analysis. Such an approach can assist
clinicians in understanding a model’s prediction by providing
interpretable results.

I. INTRODUCTION

Cervical cancer is a serious health problem and it is one
of the most common types of cancer in women worldwide
[1]. With the development of promising computer vision
techniques, more and more practical and efficient image
analysis models exist to provide reliable auxiliary diagnosis
results based on cell images. In cervical cell image classi-
fication tasks, the input can be an image showing a single
isolated cell, or an image showing multiple cells. A model
must classify the type of cell in the image (e.g koilocytotic,
metaplastic).

Various works have performed cervical cell classification
using neural networks. Plissiti et al. [2] applied VGG-16
[3], a deep convolutional neural network, to classify isolated
cervical cell images. Talo et al. [4] proposed a DenseNet-
161 [5] model which improved upon the results of [2]. To
further improve performance, Haryanto et al. [6] introduced a
padding scheme to AlexNet [7]. Apart from deep neural net-
works, Win et al. [8] combined various traditional machine
learning methods such as random forests, support vector
machines and k-nearest neighbors for segmentation and clas-
sification. GV et al. [9] proposed a segmentation-free PCA
based approach combined with a deep convolutional neural
network to achieve the state-of-the-art result. However, these
promising results are based on isolated cell images, and thus
consider only a single isolated cell. Un-cropped cervical cell
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images contain multiple cells in different regions, and we
refer to these as multi-cell images. Focusing only on a single
cell discards vital information in the multi-cell image. For
example, different types of cells in a multi-cell image have
different distributions, and the relation between them varies.
In addition, although these deep learning models achieve
high performance in classification of isolated cells, they
do not provide explainability and interpretabilty information
for their model, which makes it difficult to understand the
rationale behind their decisions. To enable adoption of these
methods, we need improved explanations and interpretabilty
to build user confidence and acceptance.

In this paper, we aim to develop interpretable deep learn-
ing models for the classification of multi-cell cervical cell
images. Particularly, our work focuses on exploring the
feasibility of adapting attention-based frameworks. Several
prominent explainability methods for CNN-based models
have been introduced including class activation mapping [10]
and guided backpropagation [11]. While there is much in-
teresting research within this field, it is immature and there
are only a few works that investigate explanation methods
for cervical cancer classification [12]. We verify our models
using an attribution prediction technique and compare the
interpretable learning results offered by traditional CNN
models and the proposed attention-based model.

Our main contributions are summarized as follows:
1) We compare and introduce multiple deep learning

models including a residual network, dense network,
classic residual attention model and residual channel
attention mechanisms to classify multi-cell cervical
cell images.

2) We demonstrate the effectiveness of interpretable at-
tention networks for cervical cancer analysis.

II. METHODOLOGY

In this paper, we analyze different deep learning models
for cervical cell classification and compare their perfor-
mance. We introduce attention-based frameworks to extract
important features from multi-cell cervical cell images. We
aim to demonstrate the effect of the attention mechanism on
the classification of multi-cell cervical images, which contain
blank backgrounds with multiple cells of the same type.
We also provide reliable explanations to demonstrate how
the attention mechanisms work, and show its interpretability
through gradient visualization.

A. Deep convolutional neural networks

With the development of deep learning, various proposed
deep convolutional neural networks have achieved success
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in classification, detection and segmentation tasks. We se-
lect the following two prominent deep convolutional neural
networks, which recently have shown to be successful for
cervical image classification [4], [13].

1) Residual Convolutional Networks (ResNet): Recent
studies have shown the high performance of ResNet [14],
which leverages the residual block structure, for image
recognition and classification tasks. It uses residual (or skip)
connections to allow information to more readily propagate
through the network. ResNet models have many variants
with different number of layers and different residual block
structures. The baseline model in our experiments is based
on ResNet-50, which has 48 Convolutional layers, along with
1 MaxPool and 1 Average Pool layer.

2) Dense Convolutional Networks (DenseNet): DenseNet
[5] simplifies the connectivity pattern between layers in a
deep neural network, which significantly reduces the number
of parameters and prevents learning from redundant feature
maps. The structure of DenseNet is different from a tradi-
tional deep neural network, which concatenates the output
feature maps of each layer with incoming feature maps,
instead of summing them together. Similar to how ResNet is
divided into residual blocks, DenseNet is divided into Dense
Blocks with the same dimension as the feature maps, but
with a different number of filters. Therefore, each layer in
DenseNet has direct access to its preceding feature maps,
and collect the new information it learned from the input.
We chose one variant from this light and effective model,
DenseNet101, for use in our experiments.

B. Attention-based frameworks

Recently, attention mechanisms have shown an ability to
achieve substantial improvements when added to deep learn-
ing models for various applications. Attention mechanisms
helps a network to focus on important features in the data,
and lead to more accurate decisions. Hence, we introduce
two different attention mechanisms in our model for further
experiments.

1) Residual attention networks: The residual attention
network [15] is a convolutional neural network based on
the attention mechanism of [16]. A naive attention learning
creates a soft mask on the input to generate attention-aware
features. However, it may lead to a performance drop as its
dot product operation with a mask will degrade the value
of features in deep layers. Residual attention networks solve
this problem by using a trunk branch, a pre-activation ResNet
unit [17] for feature extraction; and a mask branch, which
uses a bottom-up top-down structure for learning the mask. In
the residual attention network, it adds the attention module
after each residual layer, making features clearer as depth
increases. We use this residual attention network based on
the ResNet-50 framework as our first attention-based model.

2) Residual channel attention: For image super-
resolution, it is necessary to avoid learning abundant
low-frequency information from low-resolution inputs and
features. These unnecessary features are treated equally
across channels. The residual channel attention network

(RCAN) [18] is made up of residual-in-residual (RIR)
blocks with channel attention, which ignores abundant
low-frequency information through skip connections within
blocks, and adaptively rescales features between channels.
Channel attention combines channel-wise features with
different weights by exploiting the interdependencies among
them. Therefore, for highly accurate image super-resolution,
it is more flexible and more powerful for feature extraction
between channels. We aim to use this RCAN model to verify
the effectiveness of attention mechanisms for multi-cell
images classification, and compare it with the residual
attention networks (see Section II-B.1).

C. Explainability and interpretability

Lack of transparency is identified as one of the main
barriers for AI adoption in clinical practice. A step towards
making AI trustworthy is the development of explainable AI
methods. In this analysis, we adopted the integrated gradient
model [19] to illustrate the advantages of these methods for
helping clinicians to identify the parts of the images that are
critical in the decision.

The integrated gradient model computes the attribution
of the prediction of the deep neural network by using the
gradient operation. Different to previous attribution tech-
niques, it is characterized by two axioms: sensitivity and
implementation invariance; which makes it more flexible and
easier to apply to a variety of deep networks.

III. EVALUATION

A. Datasets and experimental setup

The performance of each proposed method is evaluated on
the SIPaKMeD dataset [2], which is an open-source cervical
cell image database. It consists of two different types of data:
966 multi-cell images and 4049 isolated cell images. There
are five different categories of cervical cells in this dataset:
superficial-intermediate, parabasal, koilocytotic, dysketarotic
and metaplastic. Sample images from each class are shown
in Fig. 1. Class distribution details are presented in Table I.
These cell images were acquired using a high resolution CCD
camera connected to an optical microscope. From the data
distribution in Table I it can be noted that the classification
task for multi-cell images is more challenging as, apart from
the imbalanced class distribution, the volume of data is
smaller than for the isolated cell images. In our experiments,
we focus on multi-cell images only, as isolated cell images
contains features of a single cell only and thus do not contain
information on cell distributions and relationships between
cells. We also aim to demonstrate that some of these isolated
cell images may suffer from the lack of cell information. To

TABLE I: Data distribution of the SIPaKMeD dataset

Category Multi-cell Images Isolated Images
Dyskeratotic 223 813
Koilocytotic 238 825
Metaplastic 271 793
Parabasal 108 787

Superficial 126 813
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(a) Superficial (b) Parabasal (c) Koilocytoti (d) Dyskeratoti (e) Metaplastic

Fig. 1: Multi-cell images of the five categories considered.

verify the capability and effectiveness of each model, we
also applied them to the isolated cell images. Both types of
data (multi-cell and single-cell images) are split such that
70% of the data samples are allocated for training, 20% for
validation, and 10% for testing.

B. Evaluation metric and implementation

As this is a multi-class classification task with an uneven
class distribution, we use a weighted-F1 score to measure
performance. This is calculated as follows,

Weighted F1 =
5

∑
i=1

2×precisioni × recalli
precisioni + recalli

×wi, (1)

where wi is the weight of the i− th class and depends on the
number of positive examples in that class.

The overall accuracy on the test set is also an evalua-
tion metric, which simply shows the overall performance
of different models. Categorical cross-entropy loss and the
Adam optimizer [20] (learning rate=0.001, other parameters
are default in Pytorch) are used to train the models. Models
are trained for 50 epochs with a mini-batch size of 16,
as we found more epochs lead to overfitting. All models
were implemented in Pytorch 1.6.0 [21] with same parameter
setting. Results are reported based on 5-fold cross-validation.

C. Experimental results and discussion

An evaluation of all proposed models and baseline meth-
ods for each dataset are shown in Table II.

From the accuracy results on both isolated and multi-
cell images, it is obvious that the DenseNet-121 model with
the residual channel attention mechanism has a significant
advantage compared to other methods commonly used for
medical image classification [4]. The original DenseNet-
121 model achieves better results than the ResNet-50, as
it is deeper and able to extract more hidden features. The
attention-based model of DenseNet-121 also has the highest
accuracy on the test set.

However, it is worth noting that the residual atten-
tion model based on ResNet-50 decreases the accuracy
of ResNet-50. To explore its prediction results in more
details, we compute the F1-score for each model on each
class, shown in the lower section of Table II. The baseline
ResNet-50 model has difficulty classifying koilocytotic and
metaplastic cells correctly since both are in large size and
some koilocytotic cells are a type of metaplastic cell; al-
though there are still slight differences between them in their
color, contour, size and shape. Therefore, the introduction
of attention in ResNet-50 targets these differences between

TABLE II: Results

ResNet-50 DenseNet-121 [4] RAN-ResNet-50 RCAN-DenseNet-121

Accuracy 95.11% 95.84% 94.13% 96.33%

(a) Overall accuracy on isolated cervical cell images

ResNet-50 DenseNet-121 [4] RAN-ResNet-50 RCAN-DenseNet-121

Accuracy 85.15% 89.11% 84.16% 91.09%

(b) Overall accuracy on multi-cell cervical cell images

ResNet-50 DenseNet-121 RAN-ResNet-50 RCAN-DenseNet-121

Dyskeratotic 0.869 0.898 0.851 0.978
Koilocytotic 0.744 0.809 0.783 0.869
Metaplastic 0.839 0.929 0.877 0.896
Parabasal 0.96 0.957 0.88 1.0

Superficial 0.846 0.889 0.815 0.889

(c) F1 score of each class on multi-cell cervical cell images

these two classes and improves the precision. However, as
in the residual attention model, the attention layer is added
after each residual layer and it learns similar noise for other
classes. Therefore, although it improves upon the weakness
of the baseline model, it decreases the precision of other
well-performing classes and thus lowers the overall accuracy.

The performance of residual channel attention DenseNet-
121 is outstanding in four of the five classes. Comparing
with the original DenseNet-121 model, the introduction of
residual channel attention significantly improves the preci-
sion on the dyskeratotic class and koilocytotic class with
a slight loss in precision for metaplastic cells. This result
also gives strong proof of the effectiveness of the channel
attention mechanism in this cervical cell classification task.

In order to explore more details of the attention learning
progress, we visualize the gradient attribution prediction
of DenseNet-121 and the residual channel attention based
model in Fig. 2.

From the gradient visualization results of a random test
image from the dyskeratotic category, we can observe that
DenseNet-121 considers features from the input image from
a large area of cells, including a part of the background.
Conversely, the model with residual channel attention is
more focused on a small specific region of the multi-cell
image, which means it makes the decision from a few cells
only, ignoring the background and other noisy information.
From this interpretable visualization result of the deep neural
network, we also understand how the attention mechanism
works in classifying different cervical cells. It gives more
weight in parts of the cell groups for classification, focusing
on parts which contains useful features and relations. This
visualization results also provide information about the spe-
cific regions in the multi-cell images, which helps to assist
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(a) DenseNet-121 without attention

(b) DenseNet-121 with residual channel attention

Fig. 2: Attribution Prediction Gradient Visualization.
Columns from left to right: the original image, gradient and
integrated gradient overlay, gradient and integrated gradient.

the identification of cervical cells of particular interest for
experts in a real world application.

Our current evaluation results show that the residual chan-
nel attention mechanism is efficient for analyzing the multi-
cell cervical cell images and classifies them more precisely.
It also offers information regarding hidden relations between
cell groups in the multi-cell image, and it is worth noting
that the attention often falls on a specific group of cells.
There may also be other factors such as the distribution of
different classes of cervical cells which can be analyzed.
CNNs have been commonly used in the digital pathology
domain for the classification of fixed-sized biopsy image
patches. However, learning over patch-wise features limits
the model to capturing global contextual information. Re-
cently, graph data representations have attracted significant
attention in the analysis of histological images [22] due to
their ability to represent the tissue architecture by modeling
a tissue section as a multi-attributed spatial graph of its
constituent cells. Graph-based representations can encode
the spatial relationships across the patches for fine-grained
classification [22]. In future work, relations between cells in
multi-cell images can be analyzed through this technique.

IV. CONCLUSIONS

We introduce and compare deep convolutional neural
networks with different attention mechanisms for cervical
cell classification. We also provide a detailed explanation on

how interpretation methods can be applied to interpret classi-
fication results for cervical cell images. Our experiments and
analysis show that the residual channel attention framework
is effective in distinguishing between features for different
classes and isolating a specific region of interest for multi-
cell cervical cell images.
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