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Abstract— Fine-grained classification of breast tumors is cru-
cial for early diagnosis and timely treatment. Most fine-grained
visual classification approaches focus on learning ’informative’
visual patterns, which depend on the attention of the network,
instead of ’discriminative’ patterns, which interpretably con-
tribute to classification. In this paper, we propose to extract
discriminative patterns from informative patterns by utilizing
the prior information of the dataset. The proposed method can
detect the rough contour of the tumor area without boundary
ground-truth guidance. At the same time, different masks are
generated from the rough contour to reflect prior information
on breast cancer. Moreover, a soft-labeling approach is utilized
to replace the original BI-RADS label. Our model is trained
using image-level object labels and interprets its results via a
rough segmentation of tumor parts. Extensive experiments show
that our approach achieves a significant performance increase
on our BI-RADS classification dataset.

I. INTRODUCTION

Breast cancer has been the most common type of cancer.
Due to the improvement of early diagnosis, which leads to
timely treatment before the disease spreads in the whole
body, breast cancer is now one of the cancers with the best
curative effect. Starting from AlexNet [5] , deep neural net-
works [3], [11] has achieved great success in coarse-grained
classification. However, subtle inter-class variance and large
intra-class variance limit their performance in fine-grained
settings. Furthermore, there is a lack of research on machines
to recognize tumors at a fine-grained level like radiologists
can do according to the Breast Imaging-Reporting and Data
System (BI-RADS) criteria of the American College of
Radiology [10].

Fine-grained visual classification (FGVC) has suffered
from three main obstacles: (1) Large intra-class variance.
Objects belonging to the same category usually exhibit
significantly different postures and viewpoints. (2) Small
inter-class variance. Objects belonging to different categories
may be very similar, except for some subtle differences.
(3) Limited training data. Constructing large fine-grained
datasets is still not easy today. It requires not only time and
money but also manual labeling generated by human experts.
When it comes to fine-grained medical image datasets, apart
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from the difficulties mentioned above, even collecting data
is a considerable challenge.

Existing deep learning-based FGVC approaches can be
roughly divided into two branches: the first one is to enhance
the detailed feature representation ability of the backbone
network to achieve fine-grained feature learning [12]. The
second one is to introduce part locations or object bounding
box annotations as an additional optimization objective or
supervision besides the primary classification network with
extra modules [2], [4], [13], [15].

In [8], a feature representation enhancement method called
Bilinear CNNs is proposed. Bilinear CNNs use two inde-
pendent CNNs to capture local differences in images and
calculate the relationship between their features. This type
of method using high-level information has been proven to
enhance the extraction of more meaningful information [6],
[7] but suffers from enormous redundancy in the calculation
process.

In [2], [15], two approaches based on part locations are
designed, consisting of two parts: a detection sub-network
and a classification sub-network. In [2], the RA-CNN [2]
imitates the Region Proposal Network (RPN) network in [9]
and proposes to use an Attention Proposal Network (APN)
network to locate the informative area in the image. In [15],
the amount of information in a target area has a positive
correlation with its probability of being the target category,
and a training method that enables a navigator to detect the
area with an enormous amount of information is proposed.

Unlike previous methods, we believe that informative
areas proposed by the network can be misleading and that
discriminative areas should be selected to guide the net-
work. As mentioned above, most previous methods focus
on mining fine-grained ’informative’ features, usually where
the network has the peak response, aiming to gain better
classification performances. However, not many have noticed
that ’informative’ is not equal to ’discriminative’ that is
genuinely beneficial to classification. One reason is that trust-
ing the ability of the network to focus on correct informa-
tive regions without reasonable interpretable explanation is
risky, especially in medical application scenarios. Moreover,
some previous works use the information from fine-grained
human annotations. Despite decent results, the expensive
fine-grained human annotations make previous methods less
applicable in practice.

In this paper, we develop a straightforward approach to
tackle problems of previous FGVC methods using a weakly
supervised setting. We argue that recognizing an object
can naturally be divided into two stages: roughly locating
the whole extent of the object and roughly figuring out
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Fig. 1. Model overview. Proposal centers are firstly gained from a RPN. An ellipse is fitted as the rough position prediction of the tumor using the
proposal centers. We then construct different interpretable masks by expanding and shrinking the ellipse and classify the tumor using the masks.

how the object of one category is different from objects
in another category. Thus, we utilize a detection module
to extract informative regions from the target ultrasound
image without the human-generated detection annotations,
after which we employ a novel approach to process the
regions to form a mask that roughly fits the object, i.e., the
tumor. A subsequent interpretable multi-branch classification
module is attached to capture the features of different tumor
areas and obtains fine-grained classification results for breast
ultrasound images. Different tumor areas can provide useful
medical knowledge for the final classification.

Our main contributions can be summarized as follows:
1) We propose a paradigm with three modules, namely
feature extraction module, boundary detection module, and
classification module, to perform the fine-grained BI-RADS
classification. 2) A novel weakly-supervised approach to
detect the regions to form a mask that roughly fits the object,
different interpretable areas of the object are subsequently
extracted, which can provide prior medical knowledge for the
final classification. 3) A soft-labeling approach is utilized to
handle label confusion in BI-RADS classification and make
full use of prior knowledge of BI-RADS categories. 4) Our
model can be trained end-to-end while providing accurate,
fine-grained classification predictions as well as interpretable
regions during inference.

II. METHOD

Our method is based on the assumption that the informa-
tive regions from a neuron network can better characterize
the object. In the proposed method, we transform informative
regions into discriminative regions by using different parts
of the region which contain the target object. As is shown in
Fig. 1, our method consists of three continuous steps: Firstly,
we utilize a feature extractor to extract the features of the
image. Secondly, the outline of the object is extracted from
the features. Finally, a classification module takes different
parts of the object as input and outputs its final classification
results.

A. Feature Extraction Module

Consider a multi-class image classification task with M
classes. Define I to be a training image with ground-truth
label lJ , where J = {1, 2, ..., M} is the label set containing
all labels. Feature extractor takes I as input, and outputs
feature map Ffull ∈ RC×H×W . Here, C, H , and W refer
to the number of channels, the height, and the width of the
output activation maps. Our method uses a simple ResNet-50

without the final fully connected layer classification head as
our extractor for a fair comparison with the literature.

B. Boundary Detection Module

In order to guide the network to focus on correct regions,
we first use a simple RPN with three scales. The RPN
takes Ffull as input to propose a series of proposal centers
p ∈ R2×n as output, where n represents the number of
proposals. p stores the coordinates of the centers of the
proposals. Unlike previous object detection methods that take
the proposals as the object position, we treat the proposals
as the information areas used by the network to classify the
entire input image. However, the information areas should
not be treated as a whole part. Different regions in the
information areas can provide different medical knowledge
for final classification. The meaning of proposals can differ
significantly under different dataset settings. In our BI-RADS
classification problem for breast tumors, since malignant
tumors usually show higher-margin coarseness and those
benign tumors show the opposite, human experts practically
judge tumors first by observing their margin. We believe
that an interpretable classifier should share this experience.
The proposals from a good classifier should focus on the
information-rich margin of the tumor.

Based on this assumption, we predict a coarse margin
of the object tumor from the proposals to provide medical
knowledge to the classifier. We firstly store the centers of the
proposals from the RPN (marked as the red crosses in Fig.
1). We then fit an ellipse using the convex hull of n(n ≥ 5)
proposal centers. To minimize the error of fitting the ellipse,
we limit the spatial distribution of proposals to prevent them
from being too dense.

C. Classification Module

As shown in Fig. 2, the proposed classification module
consists of three parts: 1) capture medical features based
on the prior masks constructed with the rough boundary
from the previous subsection, 2) an attention module to
predict the importance of each part in the medical knowledge
features, and 3) a classifier with soft-labeling for BI-RADS
classification, which will be illustrated in Subsection II-D.

Firstly, we capture novel features with medical informa-
tion. We construct different masks with the ellipse from the
detection step to better identify the tumor. Three masks are
generated: marginal mask, central mask, and outer mask. The
marginal mask aims to capture the morphological features
such as circularity, margin spicules, margin coarseness, mar-
gin indistinctness, margin lobulation, etc.; the central mask
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Fig. 2. Training method of classification module. After gaining the masks,
we crop the regions from the whole image, resize them to the pre-defined
size and feed them into feature extractor(FE) and global average pooling
to gain features Fmargin, Fouter , Fcenter , respectively. All three feature
maps are in C × 1 dimension. We then concatenate those features with
a feature generated from the input image by feature extractor and global
average pooling and utilize an attention module to describe the importance
of each region.

aims to capture features like internal calcification, internal
echo heterogeneity, and other texture features; the outer mask
aims to capture features of surrounding areas.

In order to construct these three masks, we firstly expand
and shrink the ellipse by a controllable parameter k to create
the boundaries of these masks. In our settings, marginal mask
represents area between ellipses expanding and shrinking by
km1 = 1.2 and km2 = 0.6, for outer mask, ko1 = 1.4 and
ko2 = 1, and for central mask, we use the original ellipse
as the output, i.e. kc = 1. By using different interpretable
masks, the network can better capture the differences be-
tween classes instead of focusing on the most informative
areas.

After obtaining the masks, we clip different tumor parts
according to the masks and calculate their features with
the feature extractor introduced in Subsection II-A and
global average pooling with shared parameters for simplicity.
Finally, Fmargin, Fouter, Fcenter are captured for margin
mask, outer mask, and center mask, respectively. They all
have C × 1 dimension.

Then, we concatenate those features with the feature
generated by global average pooling of Ffull, which is
represented by Fave ∈ RC×1, and we name the obtained
feature as F = [Fave, Fmargin, Fouter, Fcenter] ∈ RC×4.

In the second step, an attention module is attached on top
of F to predict the importance of each region. This is realized
by a sub-network fatt, given by att = Soft-max(fatt(FT)),
where fatt consists of two bottleneck blocks with three 1×1
convolutions with batch normalization and ReLU in-between.
The result att ∈ R4 is further used for classification.

Finally, we re-weight the transformed region features F
using the attention vector att, followed by a linear classifier.
Therefore, the final prediction is given by:

y = Soft-max(W × F × att) (1)

where W ∈ RM×C is the weights of a linear classifier
for M -way classification and y ∈ RM represents the final
prediction result. The attention serves as a modulator of the
different features in F . Thus, large values suggest a more
important feature for classification.

D. Soft-labeling

Soft-labeling is a method of label embedding. In the past
few decades, deep neural networks have greatly improved
image classification performance, but they only focus on a
single objective of accuracy. These methods treat all errors
the same, which leads to a situation: the possibility of
making mistakes is indeed less than before, but when the
mistakes happen, they can also be absurd or catastrophic
and more challenging to explain. This problem is even more
critical in medical image processing. Therefore, severity for
neural network errors should be introduced. We should give
different levels of punishment for different errors. Another
intuition shows that it is not appropriate to use one-hot
labels on some images. For example, one single case can
be classified as class BI-RADS 4b; however, we cannot say
BI-RADS 4a or BI-RADS 4c is 100% wrong. In this case,
the ordinary one-hot representation of labels is inappropriate.

Soft-labeling usually uses a mapping function S(lJ) to
associate classes with a representation that encodes class
relationship information. In this paper, we utilize a mapping
function Ssoft(lJ), which outputs the categorical distribution
on the class to replace one-hot labels. The function can be
given componentwise by:

Sa
soft(lJ) =

exp(−βd(a, c))∑
b∈lJ exp(−βd(b, c))

(2)

where β is a parameter controlling the ’softness’ of the label;
a, c represent two classes in lJ (in this research, we have
6 BI-RADS classes); a distance function d(a, c) is defined
on BI-RADS classes as: d(a, c) = 1 for two adjacent BI-
RADS classes, d(a, c) = 2 for two non-adjacent BI-RADS
classes with one interval BI-RADS class, d(a, c) = 3 for two
non-adjacent BI-RADS classes with two interval BI-RADS
classes, etc. Here we give some examples in Eq. (3):

d(BI-RADS 2,BI-RADS 3) = 1

d(BI-RADS 2,BI-RADS 4a) = 2

d(BI-RADS 2,BI-RADS 4b) = 3

d(BI-RADS 3,BI-RADS 4a) = 1

(3)

III. EXPERIMENTS

A. Dataset and Implementation

We conduct extensive experiments on our BI-RADS clas-
sification dataset with 1061 breast ultrasound images. The
breast ultrasound images in our dataset are obtained from the
patients in Peking University People’s Hospital, Southeast
University Zhongda Hospital, the First Affiliated Hospital
of the Guangxi University of Chinese Medicine, and the
First Affiliated Hospital of Zhengzhou University. The ethics
committees of the four hospitals approved this study. Written
informed agreements were obtained from all participants.
All the doctors participated in the ultrasonic examinations.
According to the ACR BI-RADS® Atlas Fifth Edition, two
physicians who were blind to the pathological results and
with more than 10 years experience in breast ultrasound
diagnosis evaluated the suspicion for malignancy for all the
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TABLE I
DETAILED RESULTS ON OUR BI-RADS DATASET

BI-RADS 2 BI-RADS 3 BI-RADS 4a BI-RADS 4b BI-RADS 4c BI-RADS 5
sample amount 14 346 75 266 216 144

pmal(Ground Truth) 0.00% 0.58% 12.00% 64.66% 90.28% 97.92%
pmal(Ours) 10.53% 7.42% 25.93% 65.96% 84.62% 94.53%

pmal(ACR BI-RADS® Atlas) ≈ 0.00% ≤ 3.00% 3.00 ∼ 30.00% 30.00 ∼ 60.00% 60.00 ∼ 95.00% ≥95.00%
precision 68.42% 83.63% 70.37% 76.17% 69.66% 66.41%

recall 92.86% 94.51% 50.67% 67.29% 75.46% 59.03%

TABLE II
RESULTS ON OUR BI-RADS DATASET

method acc
DFL-CNN [14] 73.80
NTS-Net [15] 73.70

DCL [1] 72.38
LIO [16] 74.18

ResNet-50 [3] 73.70
Ours 75.87

TABLE III
ABLATION STUDY ON OUR BI-RADS DATASET

method acc
w/o object detection 74.93

w/o soft-labeling 74.65
ResNet-50 73.70
full model 75.87

lesions separately. Ultrasonic equipment includes Aplio 500,
GE Logic E9, Philips IU22, and Siemens S3000. Our dataset
is severely unbalanced and noisy, which makes our dataset
difficult to do the classification task. We only use the BI-
RADS classification label during training. The distribution
of our data is shown in the first two rows in Table I.

The input images are resized to a fixed size of 512
× 512 and randomly cropped into 448 × 448 for scale
normalization. We adopt random rotation and horizontal flip
for data augmentation. All the above transformations are
standard in the literature. We use ResNet-50 as the backbone
of all models for simplicity and fair comparison with the
literature. All models are trained for 240 epochs to ensure
complete convergence. We use stochastic gradient descent
(SGD) optimizer with momentum and an initial learning
rate of 10−3. We use 5-fold cross-validation to evaluate our
method.

B. Results

For the multi-class BI-RADS classification task, we eval-
uate the precision and recall/sensitivity of every class. We
report the probability of a single case in each class being
malignant (pmal) based on pathological results in Table I.
Our result is roughly compliant with the BI-RADS Atlas
Fifth Edition except for class BI-RADS 2 because we only
contain a limited number of images in BI-RADS 2.

We also visualize the masks captured in Subsection II-C

Fig. 3. Visualization of masks. From left to right shows full image, outer
mask, marginal mask, central mask respectively. Ellipse in full image shows
the boundary prediction of the tumor. All masks are reshaped into squares
for better visualization.

to show the interpretability of our model (refer to Fig. 3).
Our model can roughly fit the tumor, and the masks suc-
cessfully capture the corresponding features such as internal
calcification in the central mask.

Finally, We compare our results with recent FGVC meth-
ods. All methods use ResNet50 as the backbone network. As
is shown in Table II, our method outperforms recent FGVC
methods by a large margin under a realistic medical dataset
setting using classification accuracy as the metric. The bold
values in Table II are the best result.

C. Ablation Studies

We conduct an ablation study to evaluate our model com-
ponents. Our study considers two variants: one without object
detection and one without soft-labeling. The results is shown
in Table III. Soft-labeling improves accuracy by 0.95%.
Object detection improves accuracy by 1.23%, which we
believe can be further improved by a fine-grained boundary
prediction method in future works. Our proposed method
with the weakly-supervised object detection to provide med-
ical knowledge and soft-labeling obtains the best result.

Our method helps the neural network focus on discrimina-
tive parts of the image instead of random patches proposed
by the network alone. Soft-labeling significantly improves
performance than one-hot labeling by appropriately repre-
senting the characteristics of the input image.
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D. Discussion
Recent weakly-supervised FGVC works either enhance

the detailed feature representation ability of the backbone
network or attempt to discriminate similar classes by infor-
mative areas proposed directly by the network. However,
they fail to solve the problems of FGVC: large intra-class
variance and little inter-class variance. We believe that these
problems are caused by lacking concentration on discrimina-
tive areas, which can be more beneficial to classification. By
transforming ’informative’ areas into ’discriminative’ areas,
the proposed work improves how networks learn relevant
features for classification without enhancing the backbone
network. Also, by making full use of prior knowledge of
BI-RADS categories, a soft-labeling method is proposed
to reduce severe misclassification and better represent the
characteristics of different types of tumors. Both methods
are proven to be effective by experiments.

However, failure cases can be found on images with more
than two tumors due to failure to fit the ellipse. Also, our
method relies on the accuracy of the RPN, which reduces
stability. Future works will focus on the stability of our
method and other ways to fit the boundary.

IV. CONCLUSION

There are two key points in FGVC: 1) locating discrim-
inative areas instead of informative areas, 2) fully mining
and utilizing the prior knowledge of the dataset. In this
paper, we propose an interpretable paradigm to capture
discriminative features from images by roughly locating
the object and producing semantic masks under a weakly
supervised setting. We further utilize prior information of
the dataset by soft-labeling instead of one-hot labeling. Our
method outperforms some previous FGVC methods in BI-
RADS classification on our dataset. Meanwhile, our method
reports the probability of one tumor in each BI-RADS class
being malignant tumor compliant with the ACR BI-RADS®

Atlas. The study reported herein opens doors to a new way
of understanding FGVC tasks.
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