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Abstract— Neuroimaging studies often collect multimodal
data. These modalities contain both shared and mutually
exclusive information about the brain. This work aims to find
a scalable and interpretable method to fuse the information
of multiple neuroimaging modalities into a lower-dimensional
latent space using a variational autoencoder (VAE). To
assess whether the encoder-decoder pair retains meaningful
information, this work evaluates the representations using a
schizophrenia classification task. The linear classifier, trained
on the representations obtained through dimensionality
reduction, achieves an area under the curve of the receiver
operating characteristic (ROC-AUC) of 0.8609. Thus, training
on a multimodal dataset with functional brain networks and a
structural magnetic resonance imaging (sMRI) scan, leads to
dimensionality reduction that retains meaningful information.
The proposed dimensionality reduction outperforms both
early and late fusion principal component analysis on the
classification task. -

Clinical relevance – This work examines the interplay be-
tween neuroimaging modalities and their relation to mental
disorders. This allows for more complex and rigorous analysis
of multimodal neuroimaging data throughout clinical settings.

I. INTRODUCTION

Multimodal neuroimaging data is abundantly available
and although approaches that seek to combine these data,
e.g., JointICA [1], and more recently multimodal subspace
analysis [2] focus on linear decompositions, recent work on
multimodal deep learning offers the benefits of additional
flexibility which can also capture nonlinear relationships.
Multimodal deep learning research mostly focuses on the
relationship between audio, images, and/or text [3]. The
exciting new direction of multimodal representation learning,
together with growing evidence that deep learning represen-
tations can provide robust biomarkers [4], paves the way for
multimodal representation learning in neuroimaging.

Fusing modalities into lower-dimensional representations
can lead to biomarkers that more robustly predict changes
associated with mental illnesses [5]. An important downside
to deep learning techniques is that their non-linear nature
can present challenges to interpretation, which undermines
their applicability to medical problems. Interpretability is,
therefore, an important consideration in this work.

Recent work in multimodal deep learning applied to neu-
roimaging has focused on information maximization between
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representations extracted from two modalities [6], [7] or by
translating between modalities [8]. This work aims to learn a
continuous manifold of multiple modalities so that they are
represented in a locally Euclidean space. The model archi-
tecture that is used is a variational autoencoder (VAE) [9],
which maximizes a lower bound on the log-likelihood of the
data’s marginal distribution. Other work on multimodal VAEs
focuses on a factorization of shared and private subspaces
[10] and uses a separate encoder for each modality. In this
work, we intentionally force all of the modalities to populate
the same shared subspace by using a single encoder-decoder
pair for all modalities. This, for example, allows for natural
interpolation between modalities, similar to the interpolation
between different digits in the MNIST dataset [9].

To provide an initial assessment of the representations
extracted by the VAE through unsupervised training, they
are evaluated with a schizophrenia classification task. The
method is compared to both early and late fusion principal
component analysis (PCA). Schizophrenia is a mental illness
that is characterized by complex interconnected changes in
dynamics and functional connectivity. To understand how the
brains of patients with schizophrenia differ from controls
it is imperative to piece together information from multiple
modalities [5]. In this work, we treat a structural MRI (sMRI)
volume and each of the intrinsic functional brain networks
that are extracted from resting-state functional MRI (rs-
fMRI) data using NeuroMark [11] as separate modalities.
The multimodal terminology also stems from the use of
functional modes for intrinsic functional brain networks.

An important consideration when choosing our method is
that a VAE is a generative model. It can therefore decode
locations in the latent space back to brain space and either
generate new data or help interpret locations in the latent
space. The regions that have previously been linked to
schizophrenia include the thalamus, cerebellum, caudate,
superior temporal gyrus, most of the visual system (e.g.,
lingual gyrus, occipital gyrus [12]), and the supplementary
motor area [13].

II. CONTRIBUTIONS

This work introduces a generative and interpretable ap-
proach for fusing multiple neuroimaging modalities with the
following properties:

• Scaling in the number of parameters is O(1) with the
number of modalities.

• The model can generate new samples outside of the
training distribution, this could be used to perform
data augmentation or interpret individual and group
differences.
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• The model extracts representations for each modality
separately but does so in a single model. Although the
representations themselves are not made up of each
modality, the weights that are used to extract those
representations are shared. The method thus combines
advantages from both early fusion and late fusion.
The shared weights of early fusion, and the separate
representations for each modality as in late fusion.

III. METHOD

A. Problem setting

Let {Mi = {xi,j , ..., xi,N}}i=1,...,n be a set of modalities
with N subjects and n modalities. Instead of learning each
modality with a separate decoder, we enforce a shared
subspace. Further, to make this approach scalable to a large
number of modalities and because we already use a shared
decoder, we also only use one encoder for all modalities.
This forces the features that are learned for each modality
to be similar and makes sure the model scales well in terms
of memory usage. Further, given that neuroimaging datasets
are considered small compared to more commonly used
deep learning datasets, using multiple encoders may lead to
overfitting. The encoder-decoder couple is optimized for the
log-likelihood of the marginal distribution of M and each
volume is treated as an independent sample. The integral over
the marginal distribution of M , pθ(x) =

∫
pθ(z)pθ(x|z)dz is

intractable. We, therefore, optimize the evidence lower bound
(ELBO) [9]. The variational autoencoder (VAE) consists
of an encoder and a decoder. The encoder qφ(zi,j |xi,j),
parameterized as a convolutional neural network (CNN) with
parameters φ, estimates latent variable zi,j given a data
point xi,j . The decoder pθ(xi,j |zi,j), also parameterized as a
CNN, but with parameters θ, reconstructs the original sample
xi,j from the estimated latent variable zi,j . The ELBO is
made up of a log-likelihood maximization of reconstruc-
tions and a KL-divergence minimization between a prior of
our choosing pθ(z) and the posterior approximated by the
encoder. The prior in this work is a diagonal multivariate
Gaussian centered at 0, with a standard deviation of 1. The
approximate posterior that is sampled from to obtain zi,j is
also a multivariate Gaussian, parameterized by the mean µi,j
and variance σi,j predicted by the encoder.

B. Classification

To evaluate whether the dimensionality reduction retains
meaningful information, we set up a classification task. The
model is first trained using 10-fold cross-validation, where
each fold of subjects is used as a test set once and the other
9 folds are used to train on. The validation set is randomly
selected as a stratified 10% of the subjects in the training
set. After training the VAE, the weights in the VAE are
frozen. The complete dataset is then embedded using the
encoder qφ(zi,j |xi,j), where instead of sampling zi,j from its
estimated multivariate Gaussian, we use the estimated mean
µ as our latent variable zi,j . This is to make sure there is
no stochasticity in the inference process, furthermore using
both the mean µi,j and the variance σi,j as features did not

improve the model over only using µi,j in our preliminary
results. The representations of the training and validation sets
are stacked and used as input for a machine learning model.

The VAE is compared to both early and late fusion PCA,
the first uses a separate decomposition for each modality
and concatenates those as features for the classifier. The
latter uses a single decomposition on all of the modalities at
once. This results in a smaller number of features per subject
because late fusion and the VAE decompose each modality
separately and concatenates those features. The maximum
number of components for the PCA decomposition is limited
to the number of subjects in the training and validation set,
which means the results for 1024 latent dimensions are not
available for the PCA decompositions.

The estimated latent variable zi,j is a low-dimensional
representation of a volume with a dimensionality l. Given
that each subject has n different modalities, each subject j
will also have n representations zi,j , ..., zn,j . These represen-
tations can be concatenated for a subject to create a feature
vector with a size of n × l. The subject-by-feature matrix
can be used as input for a classifier. In this case, we train a
support vector machine (SVM) to predict whether subjects
in a held-out test set are patients with schizophrenia. Given
that each modality is represented using l features, we can
extract the feature importance for all nl features and then
sum the features for each modality, to get feature importance
for each of the n modalities. The feature importance helps us
understand how brain changes related to schizophrenia are
jointly represented in multiple modalities.

The classification task is evaluated using the area under the
curve (AUC) of the receiver operator characteristic (ROC).
We evaluate the model for 5 different seeds to ensure
robustness, these experiments are performed with a latent
dimensionality of 128. To evaluate the effect of the number
of latent dimensions on the information retained in the
representations, we set the seed to 42 and train the model
with four different latent dimensionalities 128, 256, 512,
1024. The performance is determined by averaging the ROC-
AUC over the 10 training folds. The encoder and decoder
trained on the first fold are used to create the figures and to
determine the feature importance for each modality.

C. Data

The datasets used in this study are FBIRN, B-SNIP,
and COBRE, each dataset, and modality was processed
using NeuroMark [11] to obtain 53 independent component
networks (ICNs). These 53 ICNs, together with a structural
MRI scan for each subject are considered to be separate
modalities, so n=54. The sMRI data is preprocessed using
SPM 12 in a Matlab 2016 environment. The data is then
segmented into modulated gray matter volumes (GMV)
and smoothed with a 6mm FWHM Gaussian kernel. Each
ICN is a 53-by-63-by-52 volume, the sMRI volumes are
resized to the same size using Scipy [14]. The values in
each volume are rescaled to [-1, 1] by dividing the values
in a volume by their maximum, which is also sometimes
referred to as maximum absolute scaling. The dataloader and
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transformations were implemented with the help of TorchIO
[15].

D. Implementation

The batches are constructed by loading the 53 ICN vol-
umes and an sMRI volume for a subject and concatenating
them into a batch. The volumes are loaded per subject to
minimize disk access. The ICNs for a subject are all saved
in one file, so loading them into a batch together leads to a
smaller number of disk accesses and reduces training time.
The loss calculated over a batch of subjects is therefore
balanced across modalities.

The code for the VAE and PCA models, inference, and
training are implemented using PyTorch [16], Catalyst [17],
and NumPy [18]. The VAE uses a convolutional encoder and
decoder pair, each of the layers uses a 3-voxel kernel, a stride
of 2, and 1-voxel padding. The channel sizes in the encoder
are 1 → 64, 64 → 128, 128 → 256, 256 → 512 and 512 →
256, 256 → 128, 128 → 64, 64 → 32, 32 → 16, 16 → 1
in the decoder, the last layer in the decoder uses stride 1
and no bias parameters. The activation function after each
convolutional layer is a ReLU [19], except for the last layer
in the decoder, which uses a hyperbolic tangent function to
map the output between [-1, 1] to match the input range. The
last convolutional layer in the encoder produces an output
with shape: 4-by-4-by-4 and 256 channels, this output is
flattened and mapped to the mean µi,j and variance σi,j ,
which are used to construct a diagonal multivariate Gaussian
from which zi,j is sampled. To make sure the VAE is fully
differentiable, we train the model using the reparameteri-
zation trick [9]. The classification evaluations in the latent
space are implemented using RAPIDS AI [20] to make sure
highly parallelizable computations are performed on the GPU
and to minimize costly CPU→GPU and GPU→CPU data
transfers. The experiments were performed on an NVIDIA
DGX-1 V100.

E. Latent structure

Most of the modalities in this paper are intrinsic networks,
which are obtained through independent component analysis
(ICA). The independence in the spatial volumes for those
components leads to a latent space that clusters modalities,
which is shown in Figure 1. The plot depicts a t-SNE [21]
projection, that can visualize the distances between points in
the VAE’s 512-dimensional latent space in 2D. Interestingly,
the ICNs that belong to the same domain are generally
clustered together, such as ICNs in the cerebellum. It is also
clear from Figure 1 that the sMRI cluster is located relatively
far away from the other modalities in the latent space. The
ICNs represent localized functional brain networks, whereas
the sMRI volume represents all of the structures in the brain.
There is more inter-subject variance to be modeled for the
sMRI volumes than for the spatially localized ICNs. This
likely contributes to the sMRI cluster being further away
from the latent ICN clusters.

Fig. 1. A 2D t-SNE projection of the VAE’s 512-dimensional latent space,
each number indicates a different modality starting at 0. Each color indicates
the domain that the intrinsic networks belong to. Each subject is represented
by 54 points in this plot, one for each modality.

IV. RESULTS

A. Classification

The average ROC-AUC for the five models trained with
different seeds and a latent dimensionality of 128 is 0.8374,
with a standard deviation of 0.0027. This shows that the
model robustly learns a latent space, where patients with
schizophrenia and controls are linearly separable.

TABLE I
THE ROC-AUC RESULTS ACROSS MULTIPLE METHODS AND LATENT

DIMENSIONS. THE VAE OUTPERFORMS THE OTHER METHODS.

Latent dimension 128 256 512 1024
VAE 0.8353 0.8569 0.8609 0.8539

Early fusion PCA 0.8229 0.8358 0.8302 X
Late fusion PCA 0.5012 0.5078 0.4914 X

The results in Table I show that the VAE outperforms both
the early and late fusion PCA. Furthermore, increasing the
latent dimensionality increases the meaningful information
in the latent space up to 512 dimensions.

Fig. 2. The top 10 most important modalities, with their names on the
x-axis and the importance that the SVM assigns to them (that sums to 1)
on the y-axis. The plot shows the standard deviation over each of the 10
test folds as a vertical line for each modality.

The feature importances are calculated using the best
model (seed=42 and 512 latent dimensions). The 10 modali-
ties with the highest feature importance are shown in Figure
2, where the rightmost modality is the most important and
the leftmost modality is the 10th most important. sMRI is the
least important modality. The number of different modalities
combined with the prior, that pulls the distributions of the
modalities towards zero-mean unit-norm, limits the variance
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that can be modeled to represent the sMRI volumes. The
variations that are modeled for sMRI in the latent space do
not help linearly separate patients from controls.

The group differences that the VAE has learned can be
interpreted by visualizing their latent group centers. These
latent group centers are the average latent location of subjects
within that group. The latent center for subjects diagnosed
with schizophrenia can then be decoded and subtracted from
the decoded latent center for healthy controls to show the
group differences. The differences of the top five most
important features are calculated, then thresholded at the
99th quantile highest values for each modality, and then
summed to create Figure 3. The figure compares the learned
differences with the voxelwise differences of the spatial
ICA components that correspond to the five most important
modalities. The results are remarkably similar, which shows
that important group differences are retained even after a
large dimensionality reduction.

ICA voxel-wise group differences

VAE decoded group differences

Fig. 3. The combined differences between patients diagnosed with
schizophrenia and healthy controls for the five modalities with the highest
feature importance.

V. CONCLUSION

When the number of modalities increases for multimodal
learning, it may not be feasible or optimal to learn a
separate encoder-decoder pair for each modality. This is
especially true for small datasets where overfitting due to
overparameterization is a potential problem. This work takes
the approach of joint multimodal representation learning
by modeling the marginal distribution of all the modalities
together. The VAE learns subspaces in the latent space
that can linearly separate healthy controls from subjects
diagnosed with schizophrenia. The proposed framework is
easy to generalize to more modalities, although modalities
like functional connectivity will require some engineering
because the network currently expects each modality to be a
53x52x63 volume.

VI. FUTURE WORK

The independence of spatial ICA components is reflected
in the latent space of our model, which leads us to believe
that unprocessed volumes may be an important direction
for fusing modality representations. Another way to tackle
this problem is to enforce additional losses in the latent
space or create an inductive bias in the architecture of the
model. Furthermore, computing joint features (early fusion)
and using those as inputs for the model may also increase
multimodal fusion in the latent space.
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