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Abstract— Bioluminescence tomography (BLT) has re-
ceived a lot of attention as an important technique in bio-
optical imaging. Compared with traditional methods, neural
network methods have the advantages of fast reconstruction
speed and support for batch processing. In this paper, we
propose a end-to-end BLT reconstruction based on convolu-
tion neural networks scheme. First, 3000 datasets with single
source and dual sources projection were conducted by Monte
Carlo method, respectively. And three convolution neural
networks (VGGNet, ResNet, and DenseNet) were adopted
to feature extraction. Then, the filtered features were used
as input to the multi-layer perceptron (MLP) to predict
the source location. The results of numerical simulation
and simulation experiments show, compared with traditional
methods, the advantages of our method are including high
reconstruction accuracy, faster reconstruction, few param-
eters, simple reconstruction process and support for batch
processing.

I. INTRODUCTION
As a non-invasive, highly sensitive, low-cost optical

imaging modality, Bioluminescence tomography (BLT)
allows to obtain 3-D distribution information and quan-
titatively result of the internal tumor tissue in cell and
molecular lever by collecting the surface light flux distri-
bution, and applying accurate light transfer model and
inverse reconstruction method [1]. It is widely used for
non-invasive visualization of tumor early detection, drug
development, efficacy assessment and other preclinical
studies.In theory, RTE can accurately depict photon
propagation in diffusive media, but it is a complicated
integro-differential equation. The diffusion equation(DE)
[2] [3] [4] have been widely used as an approximation to
the RTE equation for the tissues with high absorption
and low scattering tissue. However, for more common
used tissue, inherently contains system errors caused by
DE is unavoidable for application of BLT.

Due to the non-linearity of light scattering in tissues
and the effect of noise from the sounding camera, the
inversion problem of BLT becomes an ill-posed problem.
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To deal with this problem, many reconstruction methods
based on regularization have been proposed to improve
the reconstruction results,such as L2-norm,L1/Lp-norm
(0<p<1) and total variation norm methods [5] [6] [7]
[8] [9] [10] [11]. Although these methods can deal with
the ill-posedness of FMT inverse problem, however, the
over-smoothness of L2-norm results in blurred or spread
targets with the loss of high-frequency feature in the
reconstructed images, meanwhile L1 and Lp(0<p<1)
norm may lose the edge information due to the over-
sparsity in reconstruction. TV regularization-related op-
timizations are some of the most difficult optimizations
to be solved computationally due to the non-smooth
and nondifferentiable property of the TV regularizer.
Besides that, in practice the results of methods based
on regulazation have strong dependence on the selection
of parameters. Which will influence the accuracy of 3-D
distribution and quantitatively result of internal tumor.
With the rise of neural network algorithms in recent

years, more and more studies have tried to use neural
network algorithms to solve the inverse problem of BLT,
and good results have also been achieved. For example,
the fully connected network solution scheme proposed
by Gao et al [12], the solution scheme based on 3-D en-
decoder proposed by Guo et al [13], and the solution
scheme based on recurrent neural network proposed by
Huang et al [14]. The reconstruction results proved that
neural network can achieve better reconstruction image
contrast and localization accuracy with low computation
time. Unlike traditional regularized reconstruction algo-
rithms are based on a theory-driven algorithmic model,
deep learning algorithms are based on a data-driven
algorithmic model. Which can directly construct the
reverse photon propagation by learning the nonlinear
mapping relationship between the surface photon density
and the biological source density, without using the
forward photon propagation model and the reverse recon-
struction method. Compared with traditional methods,
neural network algorithms have the advantages of high
reconstruction accuracy and fast reconstruction speed,
and can effectively avoid errors caused by the inaccuracy
of the transmission model.
Inspired by the research of neural network, an end-to-

end bioluminescence tomography reconstruction based
on convolution neural network scheme is supposed in
this paper. In this scheme, first, the 6000 cases of surface
BLT simulations samples were constructed by using
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Fig. 1. Network Structure Diagram. Subgraph (a) shows basic structure diagram, from left to right are network input, convolutional neural
networks(CNN), multilayer perceptron(MLP) and output result respectively. Subgraph (b) shows three different CNN structure—VggNet,
ResNet and DenseNet.

Monte Carlo method. And, three convolutional neural
network (VGGNet [15], ResNet [16], and DenseNet [17])
was adopted to feature extraction and screening, as
the input of multilayer perceptron (MLP). Thus, it’s
avoid introduce numerous parameters and over come
the parameter explosion problem reducing the computer
memory requirement. Lastly, the proposed convolution
neural network scheme were verified by a series of
numerical simulations and phantom experiments. The
structure of this article as follows: In the Section 2 we
show the neural network model we used and the types
of input and output data of the neural network; In the
Section 3 we show the results of our experiments; And
in the last Section we show the conclusions drawn from
this experiment and some related discussions.

II. METHOD

A. Networks
Fig.1 shows the overall architecture of the net-

work, which is consisted of convolutional neural net-
works(CNN) and multilayer perceptron(MLP). CNN is
responsible for extracting the data features and MLP is
responsible for fitting the linear mapping. For CNN part,
three different networks(VggNet, ResNet and DenseNet)
are compared in our study, the max-pooling operation
is set after four convolutional layers for all network
and the size of convolution kernel is 3*3. Especially

for RetNet, the 2*2 size of convolution kernel with
stride is 2 to replace the max-pooling operator and
the input of each block depends on the input and
output of the previous block. DenseNet is divided into
four dense blocks, which is an extreme version of the
residual block, every convolutional layer gets the output
of all prior convolutional layers in the block as input,
the max-pooling operations are divide different dense
blocks. Although the three network architectures are
differ in details, the basic blocks are same. There are
two different operations are packaged in a single block
including convolution and relu activation function. The
formula for relu is shown as equation (1):

relu(xi) =

{
xi, if xi > 0
0, if xi < 0

(1)

For MLP part, we build a four-layer perceptron model
including an input layer, an output layer and two hidden
layers. To ensure the normalized source vector can be
fitted correctly, the sigmoid activation function is used
in the hidden layers. The sigmoid function is shown as
equation (2):

sigmoid(xi) =
1

1 + exi
(2)

Meanwhile, the xi means the output of the i− th layer
in the network. To ensure the stability of the inverse
propagation, the he initialization method [18] is used to

3635



define the weight parameters in networks. The root mean
square error (NMSE) is used as the loss function. The
he initialization method and NMSE formula are shown
as equation (3) and equation (4), where Ni means the
parameter quantity in the i − th layer and the W j

i (j =
output or label) means output or label in the network.

W ∼ N

(
0,

√
2

Ni

)
(3)

loss =
1

N
·

n∑
i=1

(
woutput

i − wlabel
i

)2 (4)

B. Datasets
Since the surface photon density and the source infor-

mation is a 3-D field distribution function in space, it is
difficult to use as inputs or labels for the neural network
directly, so we can convert it to a unique mapping in low-
dimensional space and describe the source information
as a simple vector equivalently. To validate our proposed
method, we divide the mouse head into 300 slices and
remove 120 useless slices without the brain tissue at
the top in practice. The surface photon density on both
sides are smaller than front in the mouse head and the
structure of mouse head is a continuous non-concave
surface, the positively oriented projection of the surface
photon density satisfies the unique mapping condition.
Considering a spherical source was used, we choose to
uniquely describe the source by a simple set of vectors
including the position and radius of source. Obviously,
the relationship between this vectors and source also
satisfies the unique mapping. We used Monte Carlo
method (MCX) [19] to simulate the diffusion of spherical
sources with different sizes in a mouse brain with size
18*20.8*18 mm. And the voxels data were divided into
voxels with a volume resolution of 0.1 mm. Besides, we
obtained 3000 sets of single-source datas and 3000 sets of
dual-source datas. And the network input is a projection
image, which is the surface photon density were projected
into the 2-D plane at a fixed angle.

C. Training
The optimizer is Adam with learning rate is 1e-5 and

the epoch number is 300. We took 10 percents data
from the total data as validation set and the rest of
the data for training randomly to ensure the validity of
the conclusions drawn from our experiments.

III. EXPERIMENT
To evaluate the performance of different networks on

the reconstruction effect. We compared three different
convolution neural networks, VGGNet, ResNet, and
DenseNet with FISTA both in single and dual sources
simulation. Based on the vector which consist of two sets
of source coordinates and radius. For single source, the
first four values and the last four values of the vector are
the same value. We use the location distance (LE) and
root mean square error (NMSE) as evaluation metrics,

where the formulas for LE is shown in Equation (5). It
is worth noting that the form of NMSE in the evaluation
indicators and the form of the loss function of network
are same.

LE =

√
(xpre − xtrue)

2
+ (ypre − ytrue)

2
+ (zpre − ztrue)

2

(5)
A. Single source experiment
For the single source experiment, the experiment

results can be shown as Fig.2. In the Fig.2, the visu-
alization reconstruction results with different algorithms
are given, including the information between the real
source (red) and the reconstructed source (blue) and
more details at higher resolutions are shown in mouse
brain space respectively. The Table.I shows the single
source information, evaluation indicators and different
algorithms. The results show our method has higher
accuracy than FISTA algorithm. Due to the high sparsity
of the reconstruction results, the FISTA algorithm can-
not reconstruct a spherical source with 0.2 mm radius.
For the neural network, the accuracy basically increases
with the increase of the source radius, for large sources,
the reconstruction accuracy of DenseNet is particularly
outstanding, while the source radius change has the least
effect on the reconstruction accuracy for ResNet, but
has a greater effect on VggNet and DenseNet. Due to
use the convolution instead of max-pooling to down
sampling, which increases the stability of the model in
ResNet. Due to more residual connections are used in
DenseNet, which to make it can fit more deeper feature.
So, the reconstruction accuracy of DenseNet is better
than ResNet and VggNet.
B. Double source experiment
For the dual source experiment, the experiment re-

sults can be shown as Fig.3. In the Fig.3, the visual-
ization reconstruction results with different algorithms
are given, including the information between the real
source (red) and the reconstructed source (blue) and
more details at higher resolutions are shown in mouse
brain space respectively. The Table.II shows the dual
source information, evaluation indicators and different
algorithms. The results show our method has higher
resolution than FISTA algorithm. Same as in the single
source experiment, due to the effect of source sparsity,
the reconstruction accuracy of FISTA algorithm for
large source is higher than small source. FISTA cannot
reconstruct small sources with a radius of 0.2 mm. In
neural network, the effect of VggNet becomes worse with
the source radius increase because of the interweaving
part of the two sources increases with the the source
radius. Larger the interweaving area is, the more blurred
the information of a single source is. Due to introduce
the residual links, more deep features in the intertwined
region are extracted, which makes DenseNet and ResNet
perform better than VggNet in this regard obviously.
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Fig. 2. Reconstruction results of a single source. Which red is the real source and blue is the algorithm to reconstruct the source. From
top to bottom are the reconstruction results of VGG, ResNet, DenseNet and FISTA algorithms. The radusi of the test source data used
from left to right are 0.2mm, 0.5mm and 0.8mm respectively.

It can be concluded that the method in this paper
outperforms the traditional algorithm in results.

IV. CONCLUSION
In this paper, we propose an end-to-end biolumi-

nescence tomography reconstruction based on convolu-
tion neural network scheme by building three differ-
ent convolutional neural networks. Single-source and
double-sources experiments were conducted to verify
the feasibility and effectiveness by comparing with the
conventional FISTA algorithm. The main results indicate
that our proposed framenwork have a great improvement
in positioning accuracy and volume recovery.

Our framework return the coordinates of the source
by convolutional operation on the projection image of

the light intensity distribution on the object surface
directly. It release the problem of ill-poseness in BLT
reconstruction and avoids the problems of slow itera-
tion and complex parameter adjustment in traditional
methods effectively. Compared to the finite element
framwork, our proposed framework based on the voxel-
based MCX method can overcome the limitation of
the tetrahedral mesh.Comparative experiments with the
FISTA algorithm, which confirm that the reconstruction
results of the finite element-based mesh scheme are
constrained by the mesh density (the FISTA algorithm
cannot reconstruct a source with a radius of 0.2 mm).And
for the comparison of different networks, we find that
ResNet and DenseNet have good robustness, while the
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Fig. 3. Reconstruction results of dual sources. Which red is the real source and blue of the algorithm to reconstruct the source. From
top to bottom are the reconstruction results of VGG, ResNet, DenseNet and FISTA algorithms. The radius of the test source data used
from left to right are 0.2mm, 0.5mm and 0.8mm respectively.

results of DenseNet are closest to the real situation.
DenseNet has denser residual edge connections than
ResNet and can extract deeper features, but these deeper
features may also be more susceptible to noise. Since
VGGNet has no residual edge connectivity and loses
features due to the increase in the number of layers, VG-
GNet is much less effective than ResNet and DenseNet.
On the other hand, since ResNet uses a convolution
operation instead of a downsampling operation, it has
more network parameters compared to VGGNet and
ResNet, and therefore is not as fast to compute as
VGGNet and DenseNet. From a series experiments, the
results show that the error of our proposed method is

between 1 and 2 voxels, and the variance is within an
acceptable range. Meanwhile, the steps of grid dissection
are avoided, simplifying the operation process.

However, in our research, output only reflect the
position and size of the spherical sources, which has
some limitation for describing the irregular or non-
spherical source. In futhure’s works, our frameworks
will be improved in output form, generalizability and
interpretability. Besides that,some in vivo experiments
will be conducted to test the sensitivity of our proposed
method.
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TABLE I
The differences between the reconstruction methods based on
three different neural networks and the conventional FISTA

algorithm under different signle source corresponding to the three
metrics (NMSE and LE).

Radius(mm) NMSE(mm) LE(mm)

0.2 0.22284 0.22284
VGGNet 0.5 0.02867 0.02648

0.8 0.11739 0.11732
0.2 0.22635 0.22634

ResNet 0.5 0.13416 0.13415
0.8 0.13014 0.12664
0.2 0.2369 0.2369

DenseNet 0.5 0.08925 0.08815
0.8 0.05545 0.05172
0.2 —— ——

FISTA 0.5 0.52453 0.49621
0.8 1.19066 1.158

TABLE II
The differences between the reconstruction methods based on
three different neural networks and the conventional FISTA
algorithm under different double source corresponding to the

three metrics (NMSE and LE).

Radius
(mm)

NMSE(mm)
source1

LE(mm)
source1

NMSE(mm)
source2

LE(mm)
source2

0.2 0.12801 0.12801 0.17529 0.17529
VGGNet 0.5 0.16971 0.16971 0.169 0.16899

0.8 0.24162 0.24145 0.3942 0.39407
0.2 0.11 0.11 0.1117 0.1117

ResNet 0.5 0.09144 0.09144 0.18446 0.18446
0.8 0.13067 0.13012 0.09719 0.09657
0.2 0.19021 0.19021 0.19605 0.19604

DenseNet 0.5 0.18358 0.182 0.22466 0.22327
0.8 0.10579 0.09037 0.26139 0.25554
0.2 —— —— —— ——

FISTA 0.5 1.39981 1.39005 0.60433 0.59649
0.8 0.30192 0.27154 0.45573 0.41095
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