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Abstract— Fluorescent Molecular Tomography (FMT) is
a highly sensitive and noninvasive imaging method that
provides three-dimensional distribution of biomarkers by
noninvasive detection of fluorescent marker probes. However,
due to the light scattering effect and ill-posedness of inverse
problems, it is challenging to develop an efficient construction
method that can provide the exact location and morphology
of the fluorescence distribution. In this paper, we proposed
L1−L2 norm regularization to improve FMT reconstruction.
In our research, proximal operators of non-convex L1 − L2

norm and forward-backward splitting method was adopted
to solve the inverse problem of FMT. Simulation results on
heterogeneous mouse model demonstrated that the proposed
FBS method is superior to IVTCG, DCA and IRW-L1/2 re-
construction methods in location accuracy and other aspects.

I. INTRODUCTION
With the development of medical imaging technology,

the use of non-targeted or targeted exogenous fluorescent
markers in clinical applications and biological research
has increased exponentially [1] [2] [3]. As an exten-
sion of fluorescence imaging technology, fluorescence
molecular tomography (FMT) can accurately visualize
and quantify the three-dimensional (3D) distribution of
fluorescence targets in deep turbidities by capturing the
surface fluorescence distribution of fluorescence targets
using an ultra-sensitive charge-coupled device (CCD)
camera [4] [5].

However, due to the light scattering effect the inverse
problem of the FMT is highly ill-posedness. In the
past few years, in order to overcome this problem,
many methods have been proposed in the reconstruction
[6] [7]. One effective strategy is utilizing the spatial
distribution of different biological tissues, which can
be segmented from computed tomography (CT) and
magnetic resonance imaging (MRI), as a prior infor-
mation to construct the photon propagation model.
In addition, proper regularization has always been an
important method to alleviate the ill-posedness problem
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in FMT reconstruction [8] [9] [10]. Among the traditional
methods, the Tikhonov regularization method is a typical
method to solve ill-posedness problems, which adds the
L2 norm constraint to the original objective function.
There are many standard minimum methods for solving
L2 norm regularization optimization problems, including
Newtons method, conjugate gradient method and so all.
But the over-smoothing of the L2 norm results in blurred
or diffused targets and it is difficult to obtain the sharp
boundaries in the reconstructed results.

Because of the early tumors are always small and
sparse in size compared to the entire body of the subject.
Therefore, the accumulated fluorescent probes in tumors
are also small and sparse, and it is reasonable to assume
that the fluorescent signals are sparse [11]. According to
compressed sensing theory, if a signal is sparse, it can be
reconstructed from very few measurements. Mathemat-
ically, L0 norm regularization is the sparsest constraint
but infeasible for applications. So, some researchers
choose L1 norm regularization to obtain the distribution
of the fluorescent probes [12] [13]. Various methods based
on L1 norm regularization have been proposed, such as
the iterated shrinkage method with the L1 norm (IS-L1)
, interior-point method, fast iterative soft-thresholding
algorithm (FISTA) , the incomplete variables truncated
conjugate gradient algorithm (IVTCG) [14]; L1 norm
regularization method based on the Split Bregman
method (SB-L1) , and gradient-based techniques. Beside
that, some researchers have proposed a variety of solving
methods based on L1/2 norm to solve the inverse problem
of FMT, such as IRW-L1/2 [8] HTAP [15]. In recent
years, the more excellent sparsity of L1 − L2 norm has
attracted the attention of researchers, and put forward
the corresponding solution method, namely DCA [16].
Compared with L1 norm and L1/2 norm regularization,
L1 −L2 norm is sparser and performs better in the case
of reconstruction small fluorescence probes [16].

In this paper, we adopted L1 − L2 norm regulariza-
tion to resolve the inverse problem of FMT. To solve
the nonconvex optimization problem which aroused by
L1 − L2 norm regularization, we derived the proximal
operators of L1−L2 norm and used the framework of FBS
method. To validated the performance of the proposed
method in FMT reconstruction, we carried out single
source and double sources simulation experiments and
compared with DCA, IVTCG, IRW- method at the same
time.
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II. Method
A. Photon propagation model

In biological bodies, photon propagation within the
near-infrared spectral band has a highly scattering
feature. For steady-state FMT with point excitation
sources, the following coupled diffusion equations (DE)
have been commonly used to model the forward problem
of FMT [5]:


∇ · (Dx(r)∇Φx(r)− µaxΦx(r)) = −Θsδ(r − rl)
∇ · (Dm(r)∇Φm(r)− µamΦm(r)) = −Φx(r)ηµaf (r)

r ∈ Ω
(1)

Where subscripts x and m denote the excitation and
emission light respectively. Φx stands for the photon flux
density, Dx,m denote the diffusion coefficient in biological
tissues, Dx,m = 1/3[µax,am + (1 − g)µsx,sm] , where
µax,am and µsx,sm represent the absorption coefficient
and scattering coefficient respectively, g is the anisotropy
parameter. ηµaf (r) represents the unknown fluorescence
yield distribution to be reconstructed. Θsδ(r−rl) denotes
the excitation light which is considered as the point
source. rl represents the position of a point source with
an amplitude of Θs. δ(r) is the Dirac function.

We solve the diffusion equations combined with the
Robin-type boundary condition by applying the adaptive
finite element method, we can obtain a linear model:

Ax = Φ (2)

Where A is M×N vector which contains the boundary
measurements, and x is an N × 1 vector denotes the
unknown internal distribution of the probes, Φ is an
M × 1 vector represents the measurements of surface
photon distribution.

B. Reconstruction Based on the forward–backward split-
ting (FBS) Method

In this section, we proposed a practical FBS method,
which used to solve FMT inverse problem. Since only
the photon distribution on the surface can be measured,
the dimension of the measurement is much smaller than
the dimension of the internal fluorescence distribution,
leading to the, ill-posedness of the FMT problem. As
we all know, a proper norm regularization often used to
overcome the ill-posedness of the FMT problem. L1−L2

norm has been shown to overcome ill-posedness. Consid-
ering the advantage of L1 − L2 norm regularization, we
write (2) as (3).

1
2 ||Ax− Φ||22 + λ(||x||1 − ||x||2) (3)

Where λ is the regulation parameter. We decompose
(3) into F (x) = f(x) + g(x), where

f(x) = 1
2 ||Ax− Φ||22

g(x) = λ(||x||1 − ||x||2)
(4)

Use forward–backward splitting (FBS) method to
resolve minimization problem (3) can get the following
results:

xk ∈ proxρ(g)(xg)
= argmin

x
λ (||x||1 − ||x||2) + 1

2ρ ||x− xg||22
= argmin

x
||x||1 − ||x||2 + 1

2σ ||x− xg||22
(5)

where xg = xk −A′(Ax− Φ),
Proximal operator is particularly useful in convex

optimization. For example, the proximal operator L1 for
is called soft shrinkage, which defined as:

s1(y, t) =


y − t, if y > t

0, if |y| ≤ t

y + t, if y < −t

(6)

We define x∗ as the optimal solution of the optimiza-
tion problem (3), it can straightforward to obtain the
following relations:

x∗
i ≥ 0, if xgi > 0

x∗
i ≤ 0, if xgi < 0

|x∗
i | > |x∗

j | if |xgi | > |xgj |
(7)

Because in FMT, the non-negative constraint on the
unknown vector (xgi ≥ 0, xi ≥ 0), we can assume with-
out loss of generality is a non-negative non-increasing
vector, xg1 ≥ xg2 ≥ · · ·xgN ≥ 0, and help us circumvent
any complications due to the non-differentiability of the
L1 norm penalty near zero.

Appoint G(x) = ||x||1 − ||x||2 + 1
2σ ||x− xg||22 , and its

first-order of G(x) is:

G
′
(x) =

(1− σ

||x||2
)x− xg − σq for x ̸= 0

||xg − σq||2 − σ for x = 0
(8)

Where q ∈ ∂||x||1 is a subgradient of the L1 norm. By
the above statement, we can give the optimal solution
x∗ to the optimization problem in (5):

1) When xg1 > σ, x∗ = z(||z||2 + σ)/||z||2, where z =
s1(xg, σ);

2) When xg1 ≤ σ, x∗ is an optimal solution if and only
if it is a 1-sparse vector. For x∗, x∗

i = xg1 , else x∗
i = 0;

The flowchart of the main steps of FBS method is
given in table 1.

TABLE I
Algorithm of The FBS method

Input: A, Φ, x1 = 0
For k = 1 to K do
xg = xk − ρA

′
(x− Φ)

xk+1 = proxρ(g)(xg)
xk = xk+1

End for
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III. EXPERIMENTS AND RESULTS

In this section, the simulations on 3D digital mouse
model will used to evaluate the feasibility of the FBS
algorithm for FMT reconstruction. To further quantify
the property of FBS, the location error (LE), dice coeffi-
cient (Dice), signal-to-noise ratio (CNR) were employed
in this study.

LE was defined as the location error of the reconstruc-
tion area and the real fluorescent area as follows:

LE = ||Lr − L0||2 (9)

Where Lr is the center of the reconstructed area and
L0 is the barycenter of the real fluorescent area.

Dice was introduced to evaluate the similarity of the
reconstruction area and the real fluorescent area:

Dice =
2|sr ∩ s0|
|sr|+ |s0|

(10)

Where sr is the reconstruction area, and s0 is the
fluorescent area.

CNR was performed to demonstrate the contrast of
the reconstructed signal and background:

CNR =
µROI − µROB√

ωROIσ2
ROI + ωROBσ2

ROB

(11)

Where ωROI is the weight coefficient of the region of
interest (ROI) and ωROB is the weight coefficient of the
region of back-ground (ROB). µROI , σROI are the mean
values and standard deviations of ROI and µROB , σROB

are the mean values and standard deviations of ROB
respectively.

The all experiment codes were written in MATLAB
and were performed on a desktop computer with 2.90
GHz Intel Processor I5-9400F and 16G RAM.

In the numerical simulations, A 33mm height torso
extracted from a 3D mouse atlas was utilized to sim-
ulate the heterogeneity of biological tissues [17]. which
consisted of six organs, i.e., muscle, heart, liver, stomach,
kidneys and lungs. Figure 1(a) shows the mouse model
with six organs. Which consist of muscle, heart, liver,
stomach, kidneys and lungs. Table 2 lists the related
optical properties [18], and the excited light wave length
is 650nm, the emission wavelength is 670nm. Single
fluorescent source and dual fluorescent sources were set
in the stomach, respectively in figure 1(b) and figure 1(c),
which to prove the practicality and feasibility of FBS in
FMT reconstruction; In both single-target and double-
target experiments, a sphere with a radius of 2mm was
used to simulate the fluorescence target, and two point
sources used in this experiment, their positions are shown
in the two circles in Figure 1(d), which were located one
transport mean free path beneath the surface on the
plane of Z = 17.5mm.

TABLE II
Optical parameters for the mouse organs

Material µax µ
′
sx µam µ

′
sm

Muscle 0.0052 1.08 0.0068 1.03
Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65

Kidneys 0.0660 2.25 0.0380 2.20
Kidneys 0.0660 2.25 0.0380 2.20
Stomach 0.0114 1.74 0.0070 1.36

In the whole process of the experiment, we used four
contrast methods, including the proposed FBS, differ-
ence of convex algorithm (DCA), the incomplete vari-
ables truncated conjugate gradient algorithm (IVTCG),
the IRW-L1/2.

Fig. 1. (a) The 3D views of mouse model, (b) Torso of the mouse
atlas model with one spherical fluorescent target in the stomach,
(c) Torso of the mouse atlas model with two spherical fluorescent
targets in the stomach, (d) Point excitation sources on the plane of
Z = 17.5mm. The two circles denote the point excitation sources.

A. Single-target reconstruction on 3D digital mouse
atlas

In the single-target experiment, the forward FEM
mesh was discretized into 15847 nodes and 82847 tetra-
hedral elements. In the process inverse reconstruction,
the FEM mesh was discretized into 10774 nodes and
55203 tetrahedral elements, and the central position of
the true fluorescent target is (18, 6, 17.5) mm. Fig.
2(a)-(d) shows the cross-sectional and three-dimensional
renderings of the four methods respectively. Table 3
presents the quantitative results of the four methods in
single-target experiments. From fig 2 and Table 3 can get:
FB and IRW-L1/2. have higher CNR; FB has a smaller
artifact and smaller error than the other three methods;
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Fig. 2. Reconstruction results in the case of single target.
Where (a) shows the reconstruction results of FBS, (b) shows
the reconstruction results of DCA, (c) shows the reconstruction
results of IVTCG, (d) shows the reconstruction results of IRW-
L1/2. (a) (d) shows 3D rendering the cross-section views of
reconstructions by four comparative methods. In the 3D rendering
red grid represent the real target and the green area represent the
reconstruction target. The cross-section views of reconstructions by
four comparative methods at the axial slice (z = 17.5mm) where
the center of the real fluorescent target (denoted by the small black
circle) is located.

Fig. 3. Reconstruction results in the case of double target.
Where (a) shows the reconstruction results of FB, (b) shows the
reconstruction results of DCA, (c) shows the reconstruction results
of IVTCG, (d) shows the reconstruction results of IRW-L1/2. (a)-
(d) shows 3D rendering the cross-section views of reconstructions by
four comparative methods. In the 3D rendering red grid represent
the real target and the green area represent the reconstruction tar-
get. The cross-section views of reconstructions by four comparative
methods at the axial slice (z = 17.5mm) where the center of the
real fluorescent target (denoted by the small black circle) is located.
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At the same time, FB has the largest dice coefficient
among the four methods, which indicates that the shape
fitting of FB is also superior to other methods.

TABLE III
Quantitative results in single-target experiment

Method Reconstruction
source center(mm) LE(mm) DICE CNR

FBS (18.08, 6.62, 17.59) 0.54 0.67 53.16
DCA (18.92, 6.17, 18.66) 1.49 0.40 21.90

IVTCG (18.20, 6.70, 17.86) 1.02 0.51 30.53
IRW-L1/2 (18.20, 5.94, 17.33) 0.71 0.60 59.08

B. Double-target reconstruction on 3D digital mouse
atlas

In the double-target experiment, the forward FEM
mesh was discretized into 12993 nodes and 67069 tetra-
hedral elements. In the process inverse reconstruction,
the FEM mesh was discretized into 10774 nodes and
55203 tetrahedral elements. The central positions of the
two true fluorescence targets are (23, 7.5, 17) and (14,
7.5, 17) mm, respectively Fig. 3(a)-(d) shows the cross-
sectional and three-dimensional renderings of the four
methods respectively. Table 4 presents the quantitative
results of the four methods in double-target experiments.
From fig 3, We can clearly see that the reconstruction
result of FBS method is the best fit with the real light
source, which is also proved by DICE in Table 4. And
from Table 4, we can get: FBS has a smaller artifact and
smaller error than the other three methods.

TABLE IV
Quantitative results in single-target experiment

Method Reconstruction
source center(mm) LE(mm) DICE CNR

FBS (23.09, 7.83, 16.70)
(14.60, 7.36, 17.02)

0.45
0.61

0.67
0.43 31.36

DCA (23.03, 7.66, 16.35)
(15.10, 6.49, 17.02)

0.66
1.51

0.53
0.44 17.08

IVTCG (23.03, 7.66, 16.35)
(14.11, 7.84, 16.12)

0.66
0.84

0.50
0.22 11.19

IRW-L1/2
(21.85, 8.14, 16.68)
(13.93, 7.03, 17.59)

1.34
0.73

0.19
0.33 3.21

IV. DISCUSSION AND CONCLUSION
In this study, we proposed L1−L2 norm regularization

to overcome the ill-posedness of FMT reconstruction. By
derived the proximal operator of L1 − L2 norm, we can
use the framework of FBS method solve efficiently. We
demonstrated the performance of proposed FBS method
in FMT with simulated data on a heterogeneous mouse
model. By through comparison experiment on single and
double source reconstruction, we can get the proposed
FBS method outperformed several typical reconstruction
algorithms such as DCA, IVTCG, IRW-L1/2.

Although FBS has achieved better results, the prob-
lems of FBS still have shortcomings that need to be
resolved. It should be noted that our proposed method

may not be suitable for all situations, because in the
digital simulation experiment, the FBS method was only
utilized to reconstruct the fluorescence targets in liver.
Moreover, we are not performed in vivo experiments to
verify the feasibility of the FBS method. It is also noted
that in this work, we chose the regularization parameters
according to experimental experience and our previous
work on reconstruction, which is time consuming and
unstable.

Thus, in the future study, we will carry out more
experiments to verify the proposed method application
and performance in the other tumor types or diseases.
and we will focus on method development based on
adaptive parameters. Future work will also focus on
clinical research of FMT.
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