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Abstract— Epidermal growth factor receptor (EGFR) gene
mutation status is crucial for the treatment planning of lung
cancer. The gold standard for detecting EGFR mutation
status relies on invasive tumor biopsy and expensive gene
sequencing. Recently, computed tomography (CT) images and
deep learning have shown promising results in non-invasively
predicting EGFR mutation in lung cancer. However, CT
scanning parameters such as slice thickness vary largely
between different scanners and centers, making the deep
learning models very sensitive to noise and therefore not
robust in clinical practice. In this study, we propose a novel
QuarterNetqdaptive model to predict EGFR mutation in lung
cancer, which is robust to CT images of different thicknesses.
We propose two components: 1) a quarter-split network to
sequentially learn local lung features from different lung
lobes and global lung features; 2) a domain adaptive strategy
to learn CT thickness-invariant features. Furthermore, we
collected a large dataset including 1413 patients with both
EGFR gene sequencing and CT images of various thicknesses
to evaluate the performance of the proposed model. Finally, the
Quarter Netaqaptive model achieved AUC over 0.88 regarding
CT images of different thicknesses, which improves largely
than state-of-the-art methods.

Clinical relevance— We proposed a non-invasive model to
detect EGFR gene mutation in lung cancer, which is robust to
CT images of different thicknesses and can assist lung cancer
treatment planning.

I. INTRODUCTION

Epidermal growth factor receptor (EGFR) gene mutation
status is critical for the treatment planning of lung cancer.
According to the NCCN guideline, EGFR-targeted therapy
is the first-line treatment for EGFR-mutant patients, while
other treatments (e.g., chemotherapy) are recommended for
EGFR-wild type patients [1]. Currently, EGFR mutation
status is determined by invasive tumor tissue biopsy and
expensive gene sequencing. Therefore, non-invasive and low-
cost manners are in need. Computed tomography (CT), as
a routinely used technique in lung cancer analysis, is non-
invasive, cost-effective, and enables us to observe the whole
tumor instead of a small part of tumor tissues.
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Recently, deep learning has shown promising results in
predicting EGFR mutation status and many clinical outcomes
using CT images [2]. However, CT images are heterogeneous
between different scanners and centers, which affects deep
learning models largely. For instance, CT slice thickness
can cause data distribution gaps and finally affects model
performance [3], [4]. As shown in Fig. la and Fig. 1b,
thin-slice CT image (slice thickness < 2mm) provides more
detailed texture information but introduces more noise. On
the contrary, thick-slice CT image (slice thickness > 3mm)
includes less noise but losses detailed texture information
(Fig. 1c and Fig. 1d). CT images from different scanners
and centers usually have many different slice thicknesses,
which makes deep learning models only applicable to a
limited dataset in many situations. Therefore, methods that
can be adaptive to CT images of different thicknesses are
necessary [4].

Recent studies have shown that image pre-processing
methods such as re-sample, compensatory transformation,
and gray level normalization are feasible to reduce scanning
parameter effects of CT image [5], [6]. However, due to
the data-driven manner and strong feature learning ability,
deep learning models can easily learn subtle noise from
different image parameters (e.g., texture variance caused
by different slice thickness in CT) [7]. How to force the
model to focus on learning task-related pathological features
and decrease the data distribution gaps caused by different
scanning parameters in medical images attracts many recent
studies. Recently, domain adaption methods have shown
promising results in dealing with images acquired from
different equipment or tasks [8], [9]. In domain adaption
methods, images with large differences can be treated as
from different domains. Afterward, a Siamese network that
simultaneously inputs image pairs from different domains
is used, forcing the dual network to learn features that are
robust and transferable between different domains.

This study presents a deep domain adaptive model to solve
the data distribution gap caused by image slice thickness,
making the deep learning model adaptive to CT images
of different slice thicknesses. We propose a quarter-split
network to learn features from different lung lobes simul-
taneously, aiming at extracting structural information from
different lung regions that can probably reflect EGFR gene
mutation status in lung cancer. Meanwhile, a Siamese net-
work architecture is built to learn features that are robust to
images of different slice thicknesses.
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Fig. 1.

The left part depicts CT images with different slice thicknesses. (a) and (b) are the thick CT image (thickness=5mm) and the cropped tumor region;

(c) and (d) are thin CT images (thickness=Imm) and the cropped tumor region. a) and c) are from the same patient. The right part of this figure depicts
the framework of the proposed Quarter Net,qaptive model. This model includes two CNN branches with shared weights and accepts paired images as
input. Each branch consists of four quarter-split networks (QuarterNets) and an integrated network (IntNet). The four QuarterNets are independent in the

same branch but share weights between the two branches.

II. METHODS

As illustrated in Fig. 1, the proposed model consists
of two weight-shared convolutional neural network (CNN)
branches to deal with images from different domains. Here,
we treat thin-slice images and thick-slice images as two
image domains and input them to the two CNN branches
respectively. In each branch, we first propose a quarter-split
network to learn local features focusing on different lung
regions, and then concatenate the sub-region feature maps to
learn global lung features.

A. Quarter-split network to learn local and global lung
features

Inspired by a recent study that disease information can
be reflected in the whole lung [10], we adopt a whole
lung analysis manner to extract comprehensive information
including both tumor area and the whole lung area for EGFR
gene mutation prediction. We first use a DenseNet-FPN
model to segment lung area in CT image automatically [10]
and use the 3D bounding box of the segmented area as re-
gions of interest (lung-ROI). Second, the lung-ROI is resized
into 48x240x360 voxels and standardized into 0 — mean
and 1 — std intensities through z-score normalization for
further analysis. Different from previous studies, we propose
a quarter-split network (QuarterNet) to extract local lung
features from four lung regions. As shown in Fig. 1, each
lung-ROI is uniformly split into four sub-regions on the axial
plane (TL1, TRI1, BL2, BR2). For example, the ¢y input
image X' is split according to:

ixi 2
(- tl tr — i
e < Xl X, > 2 Ko

m,n=1

(la)

; e
where X7, = ( Otl 0 ),etc (1b)
where Xy, Xy, Xpi, Xpr indicate the top-left, top-right,
bottom-left, bottom-right sub-region of the lung, respec-
tively. Here, the QuarterNet is the same as the first three
dense blocks of the COVID19-Net in a recently published

study [10], which has been proved effective in analyzing
lung CT images.

Afterward, the four sub-regions are fed into the corre-
sponding quarter encoders Fgyqrter,m,n for local lung feature
extraction, which enables the model to learn specific features
of different lung lobes. Then, we concatenate the four feature
maps from the QuarterNets, aiming at mapping the detailed
local lung features into the whole lung space. Finally, we
build an IntNet (E;,;) to learn global lung features for the
EGFR gene mutation prediction. The IntNet uses a similar
structure with the last dense block of the previous COVID19-
Net with few modifications. After the global average pooling
layer of the last dense block, we use a fully connected layer
(64 units), a dropout layer, and the final output layer with a
sigmoid activation function. Given the iy, input image X°,
the predicted EGFR mutation probability pt is:

2
pi =F (IL) = Eint Z Equart,m,n (X;n,n) (2)

m,n=1

B. Domain adaption strategy to learn robust features invari-
ant to CT thickness

The domain adaptation strategy uses a Siamese-net archi-
tecture to learn the CT thickness-invariant features from two
paired images from different domains. The network includes
two branches (thin-CT branch and thick-CT branch) sharing
the same architecture. During training, We input image
pairs from the two domains (thin-CT domain and thick-CT
domain) to the two CNN branches, respectively. Each image
pair includes a thin CT image and a thick CT image from
the same patient. To enable the network to learn thickness-
invariant features, we use feature similarity loss (L) after the
fully connected layer in the IntNet, which forces the network
to extract local and global lung features that are invariant in
images of different CT thicknesses, aiming at shrinking the
data distribution gap of the two domains.

L= Z ||fthm ( tithT) - ft’mk ( tihick;CT)HQ (4)
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TABLE I
RESULTS OF THE MODELS THAT TRAINED AND TESTED IN DIFFERENT DOMAINS. ALL THE RESULTS ARE EVALUATED IN THE TESTING SET.

test in thin domain (thin CT image) | test in thick domain (thick CT image)
Methods AUC ACC SEN SPE AUC ACC SEN SPE
Quarter Netygaprive || 0-883 || 0.831 || 0.805 || 0.861 || 0.881 || 0.838 || 0.849 0.824
QuarterNetinim 0.875 || 0.828 || 0.836 || 0.818 || 0.670 || 0.588 || 0.398 0818
QuarterNetipion 0.775 || 0.690 || 0.938 || 0.390 || 0.888 || 0.821 || 0.894 0.733
Quarter Netyiq 0.845 0.770 0.907 0.604 0.858 0.831 0.727 0.916
CyclGANcr 0.645 0.496 0.137 0.930 0.600 0.547 1.0 0.00
Here, " (.) and f"i°* (.) represent the features extracted III. RESULT

from the thin-CT branch and thick-CT branch, respectively.
Xy or rtepresent the thin-CT image and the thick-CT
image of the ¢ — th patient.

For each branch in the Siamese-net, we employ a weighted
binary cross-entropy loss. For the by, branch network E°, the
loss function is:

L :—Z({yi:O}loglo (1—Eb (Xi)) S Wn 3
+ {y" =1}logio (E” (X)) - wy)

where w,,, w), represent the loss weights for negative samples
and positive samples respectively. During model training, the
final loss function is:

XS]

where ) is the hyper-parameter to weigh the feature similar-
ity loss.

(5)

C. Dataset and implementation details

We collected a large dataset including 1413 lung cancer
patients with both EGFR gene sequencing and multiple CT
image series of different slice thicknesses from the West
China Hospital. We randomly select 1000 patients as the
training set, including 524 EGFR-mutant patients and 476
EGFR-wild type patients. The other 413 patients are used as
the testing set, including 226 EGFR-mutant patients and 187
EGFR-wild type patients. All the patients in this dataset have
multiple CT image series with various slice thicknesses. We
treat CT images of slice thickness ranging from 0.75mm to
2mm as thin CT images (thin thickness domain); and CT
images of slice thickness ranging from 3mm to 6.5mm as
thick CT images (thick thickness domain). For each patient,
we select both the thin CT and thick CT to construct an
image pair to train the Siamese network. Before images
were fed to the model, data augmentations methods including
slight rotation and translation were randomly applied.

During model training, we set the hyper-parameters w,,
wp, A as 0.6, 0.4, 0.2 respectively, and use stochastic gradient
descent (SGD) optimizer with the learning rate of 0.005 to
train the model. To compare our method with state-of-the-
art methods, and prove the effectiveness of our proposed two
modules (QuarterNet and domain adaption network), all the
comparison experiments used the same training parameters.

We use area under curve (AUC), accuracy (ACC), sen-
sitivity (SEN), and specificity (SPE) as evaluation metrics.
To evaluate the performance of our network in predicting
EGFR gene mutation status, we trained the QuarterNet on
homogeneous CT images (i.e., only include CT images of the
same thickness). As shown in Fig. 2 and TABLE II, the Quar-
terNets trained on thin thickness domain (QuarterNetipirn)
or thick domain (Quarter Net;n;.r) achieved results with
AUC=0.875 and 0.888 in the testing set when tested in
the same domain. Both these two models achieved superior
performance than the model published in a recent study
(AUC=0.81) [2], indicating that through the QuarterNet to
learn both local and global whole-lung features can achieve
better performance than the commonly used tumor-based
method.

However, due to the distribution gap, the model trained
in one domain failed when tested in another domain. The
sQuarter Netyp;, is trained in the thin domain; the per-
formance drops from AUC=0.875 to AUC=0.670 when
tested in the thick domain. Similarly, when we testing the
Quarter Netipicr, in the thin thickness domain, the perfor-
mance decreases from AUC=0.880 to AUC= 0.775 (TABLE
ID). These results indicate that deep learning models are very
sensitive to CT image thickness. The most intuitive way to
improve the robustness of models is increasing the diversity
of training data, such as mixing both thin CT and thick
CT in the training set. Consequently, we mixed both thin
CT images and thick CT images to train the QuarterNet
(Quarter Net,,;,). This model achieved AUC=0.845 and
0.858 in the thin domain and thick domain, which showed
improvement than directly testing the Quarter Net;p;, and
the QuarterNety;cr in the other domains. However, the
performance of the QuarterNet,,;, still drops when com-
pared with the model trained and tested in the same domain.
Furthermore, we built a CycleGANcr [11] model to trans-
fer images into images with different thicknesses. Although
the transferred images are visually indistinguishable from the
ground truth, they failed in EGFR mutation status prediction.

Through the proposed domain adaptive network, Our
QuarterNetqqaptive model achieved remarkable perfor-
mance in all metrics when tested in both two domains. The
AUC reaches 0.883 and 0.881 in thin and thick domains,
which outperformed the QuarterNet,,;, model that is
commonly used in many studies. These results demonstrate
that through the domain adaption strategy and the feature
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Fig. 2. ROC curves of the models. (a) the proposed Quarter Netqqaptive
model, (b) QuarterNety,;, Model, (¢) Quarter Net;j ., model, (d)
Quarter Net;p;, model.

TABLE IT
RESULTS OF THE MODELS WITH AND WITHOUT QUARTER-SPLIT

STRATEGY.
Methods test set AUC ACC SEN SPE
QuarterNet _ thin 0.883 || 0.831 || 0.805 || 0.861
adaptive thick || 0.881 || 0.838 || 0.849 || 0.824
thin 0.866 || 0.806 || 0.894 || 0.701
Non — quarter Model |\ —pra—1—5¢75 10741 || 0.584 [ 0.930

similarity restriction in the two domains, the model success-
fully learned features that are invariant between different CT
thicknesses.

In the QuarterNet, we used four networks to focus on
learning local lung features from different lung lobes, and
then mapped the local features into the whole lung for global
lung feature learning. Through this local-global feature
learning strategy, the QuarterNetqdaptive model showed
improvement compared with the model without the quarter-
split network (Non-quarter split model) TABLE II in both
thin and thick domains.

Compared with the previous study that only uses tu-
mor area for analysis [2], our QuarterNet,qqptive model

Fig. 3.  The attention regions of the proposed QuarterNetqqaptive
model, which mainly focuses on lung regions around tumors. (a-d) are the
attention heat maps and (e-h) are the corresponding CT images.

is fully automatic without any manual tumor annotation
and extracts more features from the whole lung. Through
Grad-CAM visualization algorithm, we found that the
QuarterNetqqqptive model can automatically focus on peri-
tumoral lung areas for analysis Fig. 3. This demonstrates that
EGFR gene information can cause structural or anatomical
changes in the whole lung instead of only inside tumor areas.

IV. CONCLUSIONS

In this paper, we present a novel fully automated
QuarterNetqqaptive model for non-invasive EGFR gene
mutation prediction. This model used a quarter-split network
to first learn local lung features and then learn global lung
features, which showed a large improvement than commonly
used tumor-based methods. Through the domain adaption
strategy, the model learned thickness-invariant features that
showed robust performance in CT images of different thick-
nesses. Furthermore, this study used a large dataset (1413
lung cancer patients) with EGFR gene sequencing and CT
images of various thicknesses for a comprehensive eval-
uation. The results suggest that the QuarterNet,qaptive
model provides a robust tool for predicting EGFR mutation
regarding heterogeneous CT images, which is important for
individualized treatment planning in lung cancer.
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