
  

  

Abstract—In clinical practice, about 35% of MRI scans are 

enhanced with Gadolinium ‐based contrast agents (GBCAs) 

worldwide currently. Injecting GBCAs can make the lesions 

much more visible on contrast-enhanced scans. However, the 

injection of GBCAs is high-risk, time-consuming, and expensive. 

Utilizing a generative model such as an adversarial network 

(GAN) to synthesize the contrast-enhanced MRI without 

injection of GBCAs becomes a very promising alternative 

method. Due to the different features of the lesions in contrast-

enhanced images while the single-scale feature extraction 

capabilities of the traditional GAN, we propose a new generative 

model that a multi-scale strategy is used in the GAN to extract 

different scale features of the lesions. Moreover, an attention 

mechanism is also added in our model to learn important 

features automatically from all scales for better feature 

aggregation. We name our proposed network with an attention-

based multi-scale contrasted-enhanced-image generative 

adversarial network (AMCGAN). We examine our proposed 

AMCGAN on a private dataset from 382 ankylosing spondylitis 

subjects. The result shows our proposed network can achieve 

state-of-the-art in both visual evaluations and quantitative 

evaluations than traditional adversarial training. 

 
Clinical Relevance— This study provides a safe, convenient, 

and inexpensive tool for the clinical practices to get contrast-

enhanced MRI without injection of GBCAs. 

I. INTRODUCTION 

About 35% MRI scans are enhanced with Gadolinium‐
based contrast agents (GBCAs) worldwide currently. However, 
GBCAs is high-risk, time-consuming, and expensive. Some 
researchers showed that the injection of GBCAs would make 
gadolinium deposition within the human bone and brain tissue 
even patients have normal kidney function. As for patients 
who have compromised kidney function, GBCAs may result 
nephrogenic systemic fibrosis [1]. Also, the injection of the 
contrast agent itself costs additional money and time. 
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Generative adversarial network (GAN) has been widely 
used in medical image fields such as reconstruction, 
segmentation and detection [2]. If we can use GAN as an 
image generation tool to produce a contrast-enhanced MRI 
from the non-contrast-enhanced MRI, the potential harm 
caused by the injection of GBCAs would be avoided while the 
needs of clinical examination can be satisfied at the same time. 

However, there are some challenges for the generation of 
contrast-enhanced MRI. The size and shape of lesions in 
contrast-enhanced MRI are different and the anatomical 
structure around the lesion is complex which makes the 
generation of meaningful contrast-enhanced MRI more 
difficult. Large receptive fields with rich semantic information 
are helpful to locate the lesions and diminish the impact of the 
cluttered background, but the geometric details are lost due to 
the reduction of resolution. On the contrary, small fields 
facilitate the detail generation of lesions such as the 
enhancement level and boundary information, but the high 
resolution makes it lacks semantic information. Traditional 
GAN is comprised of convolutional neural networks (CNN) 
which extract features layer by layer. The shallow features of 
CNN have small receptive fields, with the network going 
deeper, the receptive field becomes larger gradually. For 
lesions, the fine-scale features are lost heavily as the network 
deepens. The performance of the traditional GAN may 
degrade because of the characteristic of contrast-enhanced 
MRI. Given that the lesions change greatly in size and shape 
which corresponding to different scale features, we propose a 
multi-scale-based generator to synthesize contrast-enhanced 
MRI. The multi-scale idea for feature extraction is widely 
employed in convolutional neural networks especially for the 
task of detection and segmentation, but there is no report for 
utilizing contrast-enhanced MRI generation. After extracting 
the features from all scales, an attention mechanism is applied 
to aggregate them effectively by weighting all features 
according to their weights. 
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Taken together, in our current study, we propose a 
AMCGAN model that can generate contrast-enhanced MRI 
without the injection of GBCAs, which provides a safe, 
convenient, and inexpensive tool for the clinical practices. Our 
proposed AMCGAN is powerful in extracting both coarse 
features and fine features to synthesize fine-grained lesions. 
The proposed AMCGAN also add a feature attention 
mechanism to enhances the feature representation learning of 
contrast-enhanced-related features and suppresses the 
expression of irrelevant features for feature aggregation. 

II. RELATED WORK 

A. Identifying lesions on non-contrast enhanced images 

Many active lesions show enhancement on contrast-
enhanced imaging after the injection of GBCAs. But given the 
disadvantages of GBCAs mentioned previously, some 
alternatives have been introduced to recognize enhanced 
lesions without the injection of GBCAs. For example, 
Michoux et al used texture parameters from T2-weighted MRI 
to assess brain inflammatory activity to replace contrast-
enhanced T1-weighted images [3]. Shinohara et al adopted 
logistic regression to model the enhancement probability of 
each voxel on MRI without the GBCAs injection [4]. Deep 
learning is also used to learn features of enhancing lesions 
more conveniently. Researches showed the deep learning can 
identify lesions on images at reduced GBCAs dose and the 
prediction accuracy can achieve 75% even on non-GBCAs 
images [5]. 

B. Generating non-contrast enhanced images by GAN 

There are many applications of GAN in the medical image. 
For example, Wolterink used a basic pix2pix framework for 
denoising [6], calimeri et al used a modified GAN adopted to 
generate MRI slices of the human brain for data augmentation 
[7]. Besides that, GAN also has good performance in tasks of 
image segmentation, detection, classification, and so on. For 
the issue of synthesizing contrast-enhanced images, Zhao et al 
introduced a Tripartite-GAN to generate liver contrast-
enhanced MRI from non-contrast enhanced MRI and then 
used it for tumor detecting [8]. The lesions in this study have 
obvious area and regular shape, but the lesions of ankylosing 
spondylitis have diverse size and shape. 

C. Multi-scale feature capture 

Multi-scale feature extraction is widely used in CNN 
especially for the task of detection and segmentation. Models 
such as HyperNet concatenate low-level and high-level 
features from different layers to improve the detection effect 
of the small object [9]. PPM and ASPP introduce different 
pooling scales or dilated convolutions to extract both the local 
and global information simultaneously which improves the 
segmentation output [10]. DeepLabv3+ uses skip connections 
between the encoding path and the decoding path to enhance 
the detail boundary information and yield a more precise 
segmentation effect [11]. 

D. Attention mechanism 

The attention mechanism is a remarkable method to focus 
on the target region rather than the whole image or sequence. 
Since Bahdanau et al used a mechanism similar with attention 
to translating, various attention mechanisms incorporated into 
deep learning networks have been widely researched. J. Fu et 

al adopted a dual attention module to stress effective spatial 
feature representations and reinforce special semantics in 
channels [12]. F. Wang et al proposed residual attention 
modules with two branches, in the attention module, each 
trunk branch has its mask branch to get its specialized features 
by the mechanism of attention [13]. Inspired by these methods, 
the attention module is adopted to learn important features 
automatically from all scales for better feature aggregation. 

III. METHODS 

A.  Attention-Based Multi-Scale Generative Adversarial 

Network 

For the effective generation of contrast-enhanced MRI, our 
contrast-enhanced generative adversarial networks 
(AMCGAN) executed the competition between two 
participants: the novel attention-based multi-scale generator 
and the CNN-based discriminator. Fig.1 displays the structure 
of our designed AMCGAN. Specifically, the attention-based 
multi-scale generator is composed of three main parts: multi-
scale feature capture modules (MSFC) made up of four 
parallel convolution layers, feature attention mechanism 
(FAM) to exploits the relationship among multi-scale features, 
and an encoder-decoder structure based on Pix2Pix [14]. The 
process of encoding consists of three convolution blocks 
which involved the operation of convolution, batch- 
normalization(BN), and ReLU. After encoding, there are six 
Resnet blocks constructed by two paths. In the decoding 
process, the convolution layer is replaced by the deconvolution 
layer. The dropout layer is used in the Resnet block to reduce 
overfitting. 

 

Figure 1.  The architecture of AMCGAN. The generator consists of three 

parts: multi-scale feature capture (MSFC), feature attentive module (FAM), 
an encoder-decoder structure based on pix2pix. The discriminator consists of 

a series of convolutions, instance-normalization, and Leaky ReLU layers.  

 

The discriminator is built by six convolution layers. First 
five convolution layers are followed by the process of 
instance-normalization (IN) and LeakyReLU. The network is 
trained as a gap measurement of real and fake images, the gap 
is backward to the generator to help synthesize more realistic 
images by minimizing the gap. 

B. Multi-Scale Feature Capture 

The lesions of contrast-enhanced MRI don’t have uniform 
size and shape which corresponding to different scale features. 
Therefore, a multi-scale feature capture scheme (MSFC) with 
different convolutional kernels sizes is designed to extract 
different scale features of lesions. The detail of the scheme is 
represented in Fig.2. The MSFC consists of four parallel sets 
of convolution layer to get feature f1, f2, f3, f4 respectively. 
Generally, in the CNN structure, the operation of pooling is 
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used to enlarge the receptive field, but it may cause the 
reduction of resolution and the image details may be lost. The 
operation of dilated convolutions can capture multi-scale 
features without losing resolution. So, a dilated convolution is 
also applied in the parallel feature extraction structure. All 
features from the parallel convolutions are concatenated into 
the feature attention module. The multi-scale module enables 
the network to extract both rough features such as the location 
and shape of lesions and fine features such as enhancement 
level and boundary information of lesions. 

 

Figure 2.  The architecture of MSFC. The MSFC consists of four parallel sets 

of convolutional kernels with four scales. The features are concatenated into 

the attention module to get final multi-scale feature maps (MSFM). 

C. Attention weighted feature fusion 

After getting features from different scales through the 
multi-scale feature capture module, we further conduct the 
weight of each feature. More specifically, we introduce a 
feature attention module into the generator which can calculate 
the interdependencies between feature maps. The feature 
attention module will allocate more weight to task-related 
features and ignore non-related features to make the 
aggregation of features more effective. The detail of the 
feature attention mechanism is presented in Fig.3. 

 

Figure 3.  The architecture of feature attention module. 

In the beginning, the multi-scale features got by the parallel 
four convolutions are concatenated as the input of the feature 

attention module. The concatenated features Z ∈ RC×H×W are 

reshaped to Z ∈ RC×N. C is the number of feature maps, H and 
W are the length and width of the feature map and N=H × W. 
A matrix multiplication between Z and the transpose of Z is 
applied. After that, a Softmax layer is taken to obtain the 

feature attention map X ∈ RC×C: 

 Xij=
Zi∙Zj

∑ exp(Zi∙Zj)
C
i=1

 (1) 

Where Xij  measures the ith feature influence on the jth 

feature. Secondly, matrix multiplication is taken between the 
transpose of Z and attention map and reshape their result 

RC×H×W . Thirdly, a scale parameter β  is multiplied to the 
result and an element-wise sum operation with Z is performed 

to obtain the output Aj： 

 Aj=β ∑ (XijZi)+Zj
C
i=1  (2) 

D. Implementation Details 

The experiment was realized by using python and PyTorch. 
In the training phase, we set a batch size of 2 and the initial 
learning rate for Adam optimizer is 0.0002 in the first 300 
epochs. The learning rate decays linearly in the last 100 epochs. 
The peak signal to noise rate (PSNR) value is used as the index 
to select the best result on training and stored the weights for 
testing. The objective of AMCGAN is shown in equation 3. G 
and D are the generator and discriminator of the network. 

 G*=argminmaxLcGAN(G,D)+λLL1(G) (3) 

𝑙cGAN is a conditional GAN loss to map non-contrast enhanced 
MRI to contrast-enhanced MRI. 𝑙L1 is an L1 distance to 
improve the PSNR. Equations 4 and 5 show the loss function 
of 𝑙cGAN and 𝑙L1. 

LcGAN(G,D)=Ex,y[logD(x,y)]+Ex,z [log (1-D(x,G(x,z)))] (4) 

 lL1(G)=Ex,y,z[||y-G(x,z)||
1
] (5) 

IV. EXPERIMENTS 

A. dataset and pre-processing 

The dataset was collected from The Third Affiliated 
Hospital of Southern Medical University including 382 
patients diagnosed with ankylosing spondylitis. Active 
inflammatory lesions of ankylosing spondylitis can show 
hyperintense signal in contrast-enhanced MRI which is 
different with chronic inflammatory lesions. The stronger the 
hyperintense signal the more likely it reflects active 
inflammation. Each patient had non-contrast enhanced MRIs 
and contrast-enhanced MRIs. The data are divided into a 
training set and testing set randomly by patients, there are 5212 
slices in the training set and 1628 slices in the testing set. 

B. Evaluation and visualization 

The performance of our proposed model to synthesis 
enhanced images is evaluated by the mean absolute error 
(MAE) and PSNR. Since doctors diagnose the nature of 
tumors or stage tumors by observing whether the tumor area is 
enhanced, we only calculate the PSNR value of the slice 
containing the tumor. Taking Pix2Pix as the baseline, compare 
it to the network with a multi-scale module and our AMCGAN. 
The objective image quality evaluation results and the 
visualization result are shown in Table 1 and Fig.4 respectively. 

TABLE I.  THE RESULT OF COMPARISON ANALYSIS 

Method PSNR  MSE  

Pix2Pix 25.39±2.31 36.84±9.56 

Multi-scale 25.46±2.24 36.97±9.83 

AMCGAN 26.29±2.19 34.64±9.20 
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As shown in Fig.4, the fake MRI generated by our 
proposed AMCGAN has no obvious visual difference with 
ground truth which is obtained by GBCAs injection. More 
importantly, AMCGAN generates a more clearly contrast-
enhanced area of lesions than the other two models. The 
comparison analysis shows the multi-scale module and feature 
attention mechanism can help the network reach better 
performance in both visual evaluations and quantitative 
evaluations. Also, the heatmaps of real contrast-enhanced MRI 
and generated contrast-enhanced MRI in Fig.5 further 
demonstrate that the AMCGAN pays attention to an area of 
the contrast-enhanced lesion in both large and small lesions 
when generation. 

Figure 4.  Examples of visual comparison results. The yellow windows of 

zoomed local patches represent the lesion area. The PSNR value of three 
generated pictures (Pix2Pix, Multi-Scale, Multi-Scale Attention) are 26.43, 

26.91 and 28.45 respectively. 

 

Figure 5. One example of contrast-enhanced MRI generation. The red 
window in the feature map shows the generation difference of lesion area 

between non-contrasted enhanced MRI, real contrast-enhanced MRI and fake 

contrast-enhanced MRI. 

V. CONCLUSION 

In this study, we propose an attention-based multi-scale 

generative adversarial network to synthesize contrast-

enhanced MRI without the injection of GBCAs. Based on the 

structure of Pix2Pix, we add a multi-scale feature module to 

extract both coarse features and fine features of lesions. 

Moreover, a feature attention module is used to enhances the 

expression of important features. Our designed network 

successfully synthesizes higher quality contrast-enhanced 

images on one private dataset of 382 subjects than traditional 

adversarial training. To further illustrate the clinical 

usefulness of synthesized images, in the future work, we will 

include the sensitivity and specificity of radiologists in 

identifying lesions on the generated contrast-enhanced MRI. 
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